首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The response of the photosynthetic apparatus to high irradiance illumination (440–2200 W/m2) was studied in the diatom Thallassiosira weisflogii by fluorescence methods. Changes in the photosynthetic apparatus were monitored by measuring characteristics of chlorophyll fluorescence F 0, F m, F v/F m, and qN for several hours after illumination of the alga with high-intensity light. Incubation of the alga with 2 mM DTT, an inhibitor of de-epoxidase of carotenoids in the diadinoxanthin cycle, led to a decrease in the nonphotochemical quenching of chlorophyll fluorescence and a drop in the F v/F m ratio, a characteristic that reflects the quantum efficiency of the functioning of the photosynthetic apparatus. Light-induced absorption changes associated with transformations of carotenoids of diadinoxanthin cycle were recorded in vivo in algal suspensions in the absence and in the presence of DTT. Using the microfluorometric method, we measured cell distribution over the efficiency of the primary processes of photosynthesis (F v/F m) after illumination. We found cells with a high tolerance of their photosynthetic apparatus to photooxidative damage. The relatively high tolerance of a portion of the cell population to high-light illumination can be related to light-induced transformation of carotenoids and to the functioning of other protective systems of the photosynthetic apparatus in diatoms.  相似文献   
2.
Two populations of a diatom alga Thallassiosira weisflogii were grown at photon flux densities (PFD) of 0.8 and 8 μmol/(m2 s). For both diatom populations, the recovery of chlorophyll fluorescence parameters (F 0, F m, F v/F m, and NPQ) was monitored after nondestructive irradiation by visible light at PFD of 40 μmol/(m2 s) and after high-intensity irradiation by visible light (1000–4000 μmol/(m2 s)). The exposure of diatoms to PFD of 40 μmol/(m2 s)—higher than PFD used for algal growth but still nondamaging to photosynthetic apparatus—induced nonphotochemical quenching (NPQ), which was stronger in algae grown at higher PFD (8 μmol/(m2 s)) than in algae grown at low light. After irradiation with high-intensity light, the recovery of chlorophyll fluorescence parameters was more pronounced in algae grown at elevated PFD level. During short-term irradiation of diatoms with high-intensity visible light (1000 μmol/(m2 s)), a stronger NPQ was observed in the culture adapted to high irradiance. After the treatment of algae with dithiothreitol (an inhibitor of carotenoid deepoxidase in the diadinoxanthin cycle) or NH4Cl (an agent abolishing the proton gradient at thylakoid membranes), a short exposure of algae to PFD of 40 μmol/(m2 s) induced hardly any nonphotochemical quenching. The results indicate the dominant contribution of xanthophyll cycle carotenoids to energy-dependent quenching.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号