首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1982年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
BackgroundCervical artery dissection (CAD) and stroke are serious harms that are sometimes associated with cervical spinal manipulation therapy (cSMT). Because of the relative rarity of these adverse events, studying them prospectively is challenging. As a result, systematic review of reports describing these events offers an important opportunity to better understand the relation between adverse events and cSMT. Of note, the quality of the case report literature in this area has not yet been assessed.Purpose1) To systematically collect and synthesize available reports of CAD that have been associated with cSMT in the literature and 2) assess the quality of these reports.MethodsA systematic review of the literature was conducted using several databases. All clinical study designs involving CADs associated with cSMT were eligible for inclusion. Included studies were screened by two independent reviewers for the presence/absence of 11 factors considered to be important in understanding the relation between CAD and cSMT.ResultsOverall, 43 articles reported 901 cases of CAD and 707 incidents of stroke reported to be associated with cSMT. The most common type of stroke reported was ischemic stroke (92%). Time-to-onset of symptoms was reported most frequently (95%). No single case included all 11 factors.ConclusionsThis study has demonstrated that the literature infrequently reports useful data toward understanding the association between cSMT, CADs and stroke. Improving the quality, completeness, and consistency of reporting adverse events may improve our understanding of this important relation.  相似文献   
2.
Microarray-driven gene-expression profiles are generally produced and analyzed for a single specific experimental model. We have assessed an analytical approach that simultaneously evaluates multi-species experimental models within a particular biological condition using orthologous genes as linkers for the various Affymetrix microarray platforms on multi-species models of ventilator-associated lung injury. The results suggest that this approach may be a useful tool in the evaluation of biological processes of interest and selection of process-related candidate genes.  相似文献   
3.
4.
Forisomes are mechanoproteins that undergo ATP-independent contraction–expansion cycles triggered by divalent cations, pH changes, and electrical stimuli. Although native forisomes from Medicago truncatula comprise a number of subunits encoded by separate genes, here we show that at least two of those subunits (MtSEO1 and MtSEO4) can assemble into homomeric forisome bodies that are functionally similar to their native, multimeric counterparts. We expressed these subunits in plants and yeast, resulting in the purification of large quantities of artificial forisomes with unique characteristics depending on the expression platform. These artificial forisomes were able to contract and expand in vitro like native forisomes and could respond to electrical stimulation when immobilized between interdigital transducer electrodes. These results indicate that recombinant artificial forisomes with specific characteristics can be prepared in large amounts and used as components of microscale and nanoscale devices.  相似文献   
5.
IntroductionIn the present study, we sought to quantify and contrast the secretome and biomechanical properties of the non-chondrodystrophic (NCD) and chondrodystrophic (CD) canine intervertebral disc (IVD) nucleus pulposus (NP).MethodsWe used iTRAQ proteomic methods to quantify the secretome of both CD and NCD NP. Differential levels of proteins detected were further verified using immunohistochemistry, Western blotting, and proteoglycan extraction in order to evaluate the integrity of the small leucine-rich proteoglycans (SLRPs) decorin and biglycan. Additionally, we used robotic biomechanical testing to evaluate the biomechanical properties of spinal motion segments from both CD and NCD canines.ResultsWe detected differential levels of decorin, biglycan, and fibronectin, as well as of other important extracellular matrix (ECM)-related proteins, such as fibromodulin and HAPLN1 in the IVD NP obtained from CD canines compared with NCD canines. The core proteins of the vital SLRPs decorin and biglycan were fragmented in CD NP but were intact in the NP of the NCD animals. CD and NCD vertebral motion segments demonstrated significant differences, with the CD segments having less stiffness and a more varied range of motion.ConclusionsThe CD NP recapitulates key elements of human degenerative disc disease. Our data suggest that at least some of the compromised biomechanical properties of the degenerative disc arise from fibrocartilaginous metaplasia of the NP secondary to fragmentation of SLRP core proteins and associated degenerative changes affecting the ECM. This study demonstrates that the degenerative changes that naturally occur within the CD NP make this animal a valuable animal model with which to study IVD degeneration and potential biological therapeutics.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0733-z) contains supplementary material, which is available to authorized users.  相似文献   
6.
Forisomes are protein bodies found exclusively in the phloem of the Fabaceae (legumes). In response to wounding, the influx of Ca ( 2+) induces a conformational change from a condensed to a dispersed state which plugs the sieve tubes and prevents the loss of photoassimilates. This reversible, ATP-independent reaction can be replicated with purified forisomes in vitro by adding divalent cations or electrically inducing changes in pH, making forisomes ideal components of technical devices. Although native forisomes comprise several subunits, we recently showed that functional homomeric forisomes with distinct properties can be expressed in plants and yeast, providing an abundant supply of forisomes with tailored properties. Forisome subunits MtSEO-F1 and MtSEO-F4 can each assemble into homomeric artificial forisomes, which indicates functional redundancy. However, we provide further evidence that both proteins are subunits of the native heteromeric forisome body in planta. We also show that the properties of artificial forisomes can be modified by immobilization, which is a prerequisite for their incorporation into technical devices.  相似文献   
7.
Understanding the clinical characteristics of patients with low back pain (LBP) who display improved lumbar multifidus (LM) muscle function after spinal manipulative therapy (SMT) may provide insight into a potentially synergistic interaction between SMT and exercise. Therefore, the purpose of this study was to identify the baseline historical and physical examination factors associated with increased contracted LM muscle thickness one week after SMT. Eighty-one participants with LBP underwent a baseline physical examination and ultrasound imaging assessment of the LM muscle during submaximal contraction before and one week after SMT. The relationship between baseline examination variables and 1-week change in contracted LM thickness was assessed using correlation analysis and hierarchical multiple linear regression. Four variables best predicted the magnitude of increases in contracted LM muscle thickness after SMT. When combined, these variables suggest that patients with LBP, (1) that are fairly acute, (2) have at least a moderately good prognosis without focal and irritable symptoms, and (3) exhibit signs of spinal instability, may be the best candidates for a combined SMT and lumbar stabilization exercise (LSE) treatment approach.  相似文献   
8.
Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.  相似文献   
9.
The aerobic decomposition of barley silage treated with two inoculants (LacA and LacB) containing mixtures of Lactobacillus plantarum and Enterococcus faecium was investigated over a 28-day period. Initially, yeast and bacterial populations were larger in silage inoculated with LacA than in silage treated with LacB or water alone (control). Differences in the succession of yeasts in silage treated with LacA were observed relative to the other two treatments. From silage treatment with LacA, Issatchenkia orientalis was the most prevalent yeast taxon over all of the sample times, and the filamentous fungus Microascus brevicaulis was also frequently isolated at later sample dates (> or = 14 days). In contrast, Saccharomyces exiguus was the most prominent yeast recovered from silage treated with LacB and water alone on days 2 and 4, although it was supplanted by I. orientalis at later sample times. Successional trends of bacteria were similar for all three treatments. Lactobacillus spp. were initially the most prevalent bacteria isolated, followed by Bacillus spp. (primarily Bacillus pumilus). However, the onset of Bacillus spp. prominence was faster in LacA silage, and Klebsiella planticola was frequently recovered at later sample times (> or = 14 days). More filamentous fungi were recovered from LacA silage on media containing carboxylmethylcellulose, pectin, or xylan. The most commonly isolated taxa were Absidia sp., Aspergillus flavus, Aspergillus fumigatus, Byssochlamys nivea, Monascus ruber, Penicillium brevicompactum, Pseudoallescheria boydii, and M. brevicaulis. The results of this study indicated that the two bacterial inoculants incorporated into barley at the time of ensilage affected the microbial ecology of silage decomposition following exposure to air. However, neither of the microbial inoculants effectively delayed aerobic spoilage of barley silage, and the rate of decomposition of silage treated with one of the inoculants (LacA) was actually enhanced.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号