首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   47篇
  国内免费   2篇
  723篇
  2024年   3篇
  2023年   9篇
  2022年   11篇
  2021年   27篇
  2020年   16篇
  2019年   23篇
  2018年   23篇
  2017年   14篇
  2016年   23篇
  2015年   38篇
  2014年   34篇
  2013年   48篇
  2012年   49篇
  2011年   35篇
  2010年   25篇
  2009年   26篇
  2008年   28篇
  2007年   23篇
  2006年   26篇
  2005年   20篇
  2004年   21篇
  2003年   25篇
  2002年   17篇
  2001年   14篇
  2000年   11篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1991年   3篇
  1989年   3篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1978年   5篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   9篇
  1972年   6篇
  1971年   10篇
  1970年   5篇
  1969年   5篇
  1968年   4篇
  1967年   6篇
  1966年   3篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
1.
Metastatic Ewing Sarcoma carries a poor prognosis, and novel therapeutics to prevent and treat metastatic disease are greatly needed. Recent evidence demonstrates that tumor-associated macrophages in Ewing Sarcoma are associated with more advanced disease. While some macrophage phenotypes (M1) exhibit anti-tumor activity, distinct phenotypes (M2) may contribute to malignant progression and metastasis. In this study, we show that M2 macrophages promote Ewing Sarcoma invasion and extravasation, pointing to a potential target of anti-metastatic therapy. CNI-1493 is a selective inhibitor of macrophage function and has shown to be safe in clinical trials as an anti-inflammatory agent. In a xenograft mouse model of metastatic Ewing Sarcoma, CNI-1493 treatment dramatically reduces metastatic tumor burden. Furthermore, metastases in treated animals have a less invasive morphology. We show in vitro that CNI-1493 decreases M2-stimulated Ewing Sarcoma tumor cell invasion and extravasation, offering a functional mechanism through which CNI-1493 attenuates metastasis. These data indicate that CNI-1493 may be a safe and effective adjuvant agent for the prevention and treatment of metastatic Ewing Sarcoma.  相似文献   
2.
The aim of the present study was to examine the secretion of biliary components in rats during infusion of increasing doses of either deoxycholic acid, chenodeoxycholic acid or cholic acid and to test the hypothesis that biliary phospholipids may regulate the hepatic bile acid secretory capacity. Analysis of bile samples, collected every 10 min throughout the infusion period showed that there was an elevation of bile acid, phospholipid, cholesterol and alkaline-phosphodiesterase secretion, with all the bile acids, peaking and then gradually declining. Their secretory rates maximum differed and were inversely related to their detergent strength. However, the secretory rates maximum and total output of phospholipids and cholesterol were similar for all bile acids infused. The per cent contribution of phosphatidylcholine to total bile acid-dependent phospholipid secretion was reduced from 84% (in the pre-infusion period) to 59, 46 and 13% at the end of the cholic acid, chenodeoxycholic acid and deoxycholic acid infusions, respectively. This decrease in the per cent contribution of phosphatidylcholine was associated with an increase in the contribution of both sphingomyelin and phosphatidylethanolamine. The biliary phospholipid fatty acid pattern corroborated these changes in the phospholipid classes. Since sphingomyelin and phosphatidylethanolamine are major phospholipids in bile canalicular and other hepatocellular membranes, the marked increase in their secretion in bile during the infusion of high doses of bile acids may indicate solubilization of membrane phospholipids, resulting in membrane structural changes responsible for the reduced excretory function of the liver.  相似文献   
3.
4.
Growth kinetics of Lactobacillus acidophilus under ohmic heating   总被引:1,自引:0,他引:1  
Lactobacillus acidophilus OSU133 was inoculated into MRS broth in a fermenter vessel and incubated at 30, 35, or 45 degrees C with agitation. Incubation temperatures were attained by conventional or ohmic heating. An electrical current at low (15 V) or high (40 V) voltage was used to heat the culture directly during fermentations under ohmic heating. The growth parameters (lag period, minimum generation time, and maximum growth) and changes in pH were determined during fermentation. Metabolic activities (consumption of glucose and production of lactic acid and bacteriocin) were determined during fermentation at 35 degrees C under both heating methods. Lag period for L. acidophilus was affected appreciably by the method of heating, but the magnitude of these changes depended on the fermentation temperature. When fermentation was done at 30 degrees C, lag period decreased by 94% under low-voltage ohmic, compared with conventional, heating methods. Ohmic heating did not change the generation time significantly and caused slight, but significant (p < 0.01) decrease in maximum growth. Therefore, the electric current enhances the early stages, but it inhibits the late stages of growth. Ohmic, compared with conventional, heating resulted in higher final pH and lower bacteriocin activity in the fermented medium. However, ohmic heating at 35 degrees C had minimal effect on glucose utilization and lactic acid production by L. acidophilus. Results show that measurement of the electric current when ohmic heating is done at a constant voltage may be used in monitoring such fermentations. In conclusion, ohmic heating is potentially useful in certain applications related to fermented foods. (c) 1996 John Wiley & Sons, Inc.  相似文献   
5.
Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.  相似文献   
6.
The extensive use of nanoparticles (NPs) in diverse applications causes their localization to aquatic habitats, affecting the metabolic products of primary producers in aquatic ecosystems, such as algae. Synthesized calcium oxide nanoparticles (CaO NPs) are of the scarcely studied NPs. Thus, the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae, and positively stimulate algal biomass. In this respect, this research was undertaken to study the exposure effect of CaO NPs (0, 20, 40, 60, 80, and 100 µg mL−1 ) on the growth, photosynthesis, respiration, oxidative stress, antioxidants, and lipid production of the microalga Coccomyxa chodatii SAG 216-2. The results showed that the algal growth concomitant with chlorophyll content, photosynthesis, and calcium content increased in response to CaO NPs. The contents of biomolecules such as proteins, amino acids, and carbohydrates were also promoted by CaO NPs with variant degrees. Furthermore, lipid production was enhanced by the applied nanoparticles. CaO NPs induced the accumulation of hydrogen peroxide, while lipid peroxidation was reduced, revealing no oxidative behavior of the applied nanoparticles on alga. Also, CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. The results recommended the importance of the level of 60 µg mL−1 CaO NPs on lipid production (with increasing percentage of 65% compared to control) and the highest dry matter acquisition of C. chodatii. This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass, metabolic up-regulations, and lipid accumulation in C. chodatii.  相似文献   
7.
8.
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications.  相似文献   
9.
Due to the association of oxidative stress and telomere shortening, it was aimed in the present study to investigate the possibility whether cyclosporine‐A exerts its nephrotoxic side effects via induction of oxidative stress‐induced renal telomere shortening and senescent phenotype in renal tissues of rats. Renal oxidative stress markers, 8‐hydroxydeoxyguanosine, malondialdehyde, and protein carbonyl groups were measured by standard methods. Telomere length and telomerase activity were also evaluated in kidney tissue samples. Results showed that cyclosporine‐A treatment significantly (< 0.05) enhanced renal malondialdehyde, 8‐hydroxydeoxyguanosine, and protein carbonyl groups levels, decreased renal telomere length, and deteriorated renal function compared with the controls. Renal telomerase activity was not affected by cyclosporine‐A. Renal telomere length could be considered as an important parameter of both oxidative stress and kidney function. Telomere shortening and accelerated kidney aging may be caused by cyclosporine‐induced oxidative stress, indicating the potential mechanism of cyclosporine‐induced nephrotoxicity.  相似文献   
10.
The microbial degradation of lignocellulose biomass is not only an important biological process but is of increasing industrial significance in the bioenergy sector. The mechanism by which the plant cell wall, an insoluble composite structure, activates the extensive repertoire of microbial hydrolytic enzymes required to catalyze its degradation is poorly understood. Here we have used a transposon mutagenesis strategy to identify a genetic locus, consisting of two genes that modulate the expression of xylan side chain-degrading enzymes in the saprophytic bacterium Cellvibrio japonicus. Significantly, the locus encodes a two-component signaling system, designated AbfS (sensor histidine kinase) and AbfR (response regulator). The AbfR/S two-component system is required to activate the expression of the suite of enzymes that remove the numerous side chains from xylan, but not the xylanases that hydrolyze the beta1,4-linked xylose polymeric backbone of this polysaccharide. Studies on the recombinant sensor domain of AbfS (AbfS(SD)) showed that it bound to decorated xylans and arabinoxylo-oligosaccharides, but not to undecorated xylo-oligosaccharides or other plant structural polysaccharides/oligosaccharides. The crystal structure of AbfS(SD) was determined to a resolution of 2.6A(.) The overall fold of AbfS(SD) is that of a classical Per Arndt Sim domain with a central antiparallel four-stranded beta-sheet flanked by alpha-helices. Our data expand the number of molecules known to bind to the sensor domain of two-component histidine kinases to include complex carbohydrates. The biological rationale for a regulatory system that induces enzymes that remove the side chains of xylan, but not the hydrolases that cleave the backbone of the polysaccharide, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号