首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2023年   1篇
  2021年   3篇
  2017年   1篇
  2012年   3篇
  2011年   2篇
  2006年   1篇
  2004年   2篇
  2002年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Urinary tract infections are second most important diseases worldwide due to the increased amount of antibiotic resistant microbes. Among the Gram negative bacteria, P. mirabilis is the dominant biofilm producer in urinary tract infections next to E. coli. Biofilm is a process that produced self-matrix of more virulence pathogens on colloidal surfaces. Based on the above fact, this study was concentrated to inhibit the P. mirabilis biofilm formation by various in-vitro experiments. In the current study, the anti-biofilm effect of essential oils was recovered from the medicinal plant of Solanum nigrum, and confirmed the available essential oils by liquid chromatography-mass spectroscopy analysis. The excellent anti-microbial activity and minimum biofilm inhibition concentration of the essential oils against P. mirabilis was indicated at 200 µg/mL. The absence of viability and altered exopolysaccharide structure of treated cells were showed by biofilm metabolic assay and phenol–sulphuric acid method. The fluorescence differentiation of P. mirabilis treated cells was showed with more damages by confocal laser scanning electron microscope. Further, more morphological changes of essential oils treated cells were differentiated from normal cells by scanning electron microscope. Altogether, the results were reported that the S. nigrum essential oils have anti-biofilm ability.  相似文献   
2.
In this study, the phytochemical, phenolic, flavonoid and bioactive compounds were successfully screened from crude extract of Sargassum wightii by LC-MS analysis after NIST interpretation. Bacterial growth inhibition study result was shown with 24 mm zone inhibition at 200 µg/mL concentration against P. aeruginosa. The increased phenolic content was much closed to gallic acid and the range was observed at 250 μg/mL concentration. In addition, flavonoid contents of the algae extract was indicated more significant with rutin at 200 μg/mL. In result, both the phenolic and flavonoid contents of the extract were more correlated with gallic acid and rutin. Further, the total anti-oxidant and DPPH radical scavenging activities were shown increased activity at 200 μg/mL concentrations. Furthermore, the excellent anti-bacterial alteration result was observed at 200 μg/mL concentration by minimum inhibition concentration. Therefore, the result was revealed that the marine algae Sargassum wightii has excellent phytochemical and anti-oxidant activities, and it has improved anti-bacterial activity against P. aeruginosa.  相似文献   
3.
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH4) is oxidized to dihydrobiopterin, which competes with BH4 for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH4 to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O2•− production to understand the roles of BH4 availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O2•−, ONOO, O2, CO2, and BH4 were also modeled. The model predicted that a lower [BH4]/[TBP] ratio decreased NO production but increased O2•− production from eNOS. The NO and O2•− production rates were independent above 1.5 μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH4]/[TBP] ratio, and a supplementation of BH4 might be effective only when the [BH4]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.  相似文献   
4.
Venular endothelial cells can release nitric oxide (NO) in response to intraluminal flow both in isolated venules and in vivo. Experimental studies suggest that venular endothelium-released NO causes dilation of the adjacent paired arteriole. In the vascular wall, NO stimulates its target hemoprotein, soluble guanylate cyclase (sGC), which relaxes smooth muscle cells. In this study, a computational model of NO transport for an arteriole and venule pair was developed to determine the importance of the venular endothelium-released NO and its transport to the adjacent arteriole in the tissue. The model predicts that the tissue NO levels are affected within a wide range of parameters, including NO-red blood cell reaction rate and NO production rate in the arteriole and venule. The results predict that changes in the venular NO production affected not only venular endothelial and smooth muscle NO concentration but also endothelial and smooth muscle NO concentration in the adjacent arteriole. This suggests that the anatomy of microvascular tissue can permit the transport of NO from arteriolar to venular side, and vice versa, and may provide a mechanism for dilation of proximal arterioles by venules. These results will have significant implications for our understanding of tissue NO levels in both physiological and pathophysiological conditions.  相似文献   
5.
Kar S  Kavdia M 《PloS one》2012,7(6):e38912
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O(2) (?-)) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O(2)(?-) and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O(2)(?-) and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O(2)(?-) and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ~0.6 fold, O(2)(?-) increased ~27 fold and peroxynitrite increased ~30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O(2)(?-) and peroxynitrite concentration in the lumen. The increased O(2) (?-) and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O(2)(?-) in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events.  相似文献   
6.
Hemoglobin-based O(2) carriers (HBOCs), which are developed as an alternative to blood transfusion, provide O(2) delivery. At present, there is no model to predict the O(2) transport for a red blood cell-HBOC mixture on a whole organ basis. On the basis of the first principles of mass balance, a model of O(2) transport for an organ was derived to calculate venous Po(2) (Pv(O(2))) for a given inlet arterial Po(2) (Pa(O(2))), blood flow, and oxygen consumption. The model was validated by using several in vivo animal studies on HBOC administration for a wide range of HBOC oxygen-binding parameters and predicted Pv(O(2)) for various Pa(O(2)) in the same species. The model was also used to predict the effect of HBOC affinity and cooperativity on Pv(O(2)) for humans. The results indicate that Pv(O(2)) can be increased at a constant blood flow-to-oxygen consumption ratio by reducing the affinity of HBOC for normoxia and mild hypoxia; however, a high-affinity HBOC would be more efficient in maintaining higher Pv(O(2)) for severe hypoxia (Pa(O(2)) < 40 Torr).  相似文献   
7.
The multi-drug resistant effect of the Gram negative bacteria K. pneumoniae was identified by disc diffusion method using specific UTI panel discs of Kleb 1 HX077 and Kleb 2 HX090 HEXA. Among the multi-drug resistant bacteria, the carbapenem resistant (CR) effect of the K. pneumoniae was screened by specific carbapenem detection antibiotics of HEXA HX066 and HX0103 HEXA by disc diffusion method. In addition, the effective antibiotics were further performed against K. pneumoniae by minimum inhibition concentration method. Further, the carbapenemase genes of VIM 1 and IMP 1 were detected from the isolated strains by multiplex PCR method. Furthermore, the biofilm forming ability of selected carbapenem resistant K. pneumoniae was initially identified by tissue culture plate method and confirmed by exopolysaccharide arrest ability of congo red agar assay. Finally, our result was proved that the identified K. pneumoniae is carbapenemase producing strain, and its virulence was extended with strong biofilm formation.  相似文献   
8.
In sickle cell disease, the changes in RBC morphology destabilize the red blood cell (RBC) membrane and lead to hemolysis. Several experimental and clinical studies have associated intravascular hemolysis with pulmonary hypertension in sickle cell disease. Cell-free hemoglobin (Hb) from intravascular hemolysis has high affinity for nitrixc oxide (NO) and can affect the NO bioavailability in the sickle cell disease, which may eventually lead to pulmonary hypertension. To study the effects of intravascular hemolysis related cell-free Hb concentrations on NO bioavailability, we developed a two-dimensional mathematical model of NO biotransport in 50-μm arteriole under steady-state sickle cell disease conditions. We analyzed the effects of flow-dependent NO production and axial and radial transport of NO, a recently reported much lower NO-RBC reaction rate constant, and cell-free layer thickness on NO biotransport. Our results show that the presence of cell-free Hb concentrations as low as 0.5 μM results in an approximately three- to sevenfold reduction in the predicted smooth muscle cell NO concentrations compared with those under physiological conditions. In addition, increasing the diffusional resistance for NO in vascular lumen from cell-free layer or reducing NO-RBC reaction rate did not improve the NO bioavailability at the smooth muscle cell layer significantly for cell-free Hb concentrations ≥1 μM. These results suggest that lower NO bioavailability due to low micromolar cell-free Hb can disturb NO homeostasis and cause insufficient bioavailability at the smooth muscle cell layer. Our results supports the hypothesis that hemolysis-associated reduction in NO bioavailability may play a role in the development of pathophysiological complications like pulmonary hypertension in sickle cell disease that are observed in several clinical and experimental studies.  相似文献   
9.
10.
Nitric oxide (NO) plays an important role in autocrine and paracrine manner in numerous physiological processes, including regulation of blood pressure and blood flow, platelet aggregation, and leukocyte adhesion. In vascular wall, most of the bioavailable NO is believed to derive from endothelial cell NO synthase (eNOS). Recently, neuronal NOS (nNOS) has been identified as a source of NO in the vicinity of microvessels and has been shown to participate in vascular function. Thus NO can be produced and transported to the vascular smooth muscle cells from 1). endothelial cells and 2). perivascular nerve fibers, mast cells, and other nNOS-containing sources. In this study, a mathematical model of NO diffusion-reaction in a cylindrical arteriolar segment was formulated. The model quantifies the relative contribution of these NO sources and the smooth muscle availability of NO in a tissue containing an arteriolar blood vessel. The results indicate that a source of NO derived through nNOS in the perivascular region can be a significant contributor to smooth muscle NO. Predicted smooth muscle NO concentrations are as high as 430 nM, which is consistent with reported experimental measurements ( approximately 400 nM). In addition, we used the model to analyze the smooth muscle NO availability in 1). eNOS and nNOS knockout experiments, 2). the presence of myoglobin, and 3). the presence of cell-free Hb, e.g., Hb-based oxygen carriers. The results show that NO release by nNOS would significantly affect available smooth muscle NO. Further experimental and theoretical studies are required to account for distribution of NOS isoforms and determine NO availability in vasculatures of different tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号