首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  39篇
  2008年   2篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1968年   4篇
  1966年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
With the use of oxonol voltage-sensitive fluorescent dye it has been shown that the stimulation of macrophages (MP) with tuftsin results in a two-phase change in membrane potential: depolarization followed by hyperpolarization of plasma membrane. The pattern of changes in membrane potential depends on Na+ concentration in the medium and is disturbed with binding of cytoplasmic Ca2+. Fluorescent signal obtained from MP loaded with Ca(2+)-activated photoprotein obelin points to a significant increase in the concentration of cytoplasmic Ca2+ under the influence of tuftsin on cells: the source for Ca2+ being the medium. The rate of regulatory voltage decrease in MP increases under the influence of tuftsin: the effect of this peptide being similar to that of calcium ionophore. All these findings taken together enable us to suggest a phenomenological scheme of transmembrane ion signals arising during stimulation of MP with tuftsin: the receptor-mediated calcium channel provides a rise in cytoplasmic Ca2+ which opens non-selective cation channels for Na+ ions to activate eventually Ca(2+)-dependent K(+)-transport.  相似文献   
2.
3.
A cyclic lipodepsipeptide, syringomycin E (SME), incorporated into planar lipid membranes forms two types of channels ("small" and "large") different in their conductance by approximately a factor of six (Biophys. J. 74:2918-2925 (1998)). We analysed the dynamics of the SME-induced transmembrane current under voltage-clamp conditions to clarify the mechanisms of formation of these channels. The voltage-dependent opening/closure of SME channels in lipid bilayers are interpreted in terms of transitions between three types of clusters including 6-7 SME molecules and some lipid molecules. The initial cluster, the precursor of the other two, was in equilibrium with SME monomer molecules at the membrane surface. The other two types of clusters (State 1 and State 2) were formed from the precursor and also during their interconversions (the consecutive-parallel mechanism of transitions). State 1 was a non-conducting state in equilibrium with small channels, which partially determined the ionic conductance of lipid bilayers modified by SME. State 2 corresponded to large SME channels, major contributors to the conductance of a bilayer. The results of the theoretical analysis based on the chemical kinetics concepts were consistent with experimental observations. Such properties of the SME-induced channels as cluster organisation, voltage dependence and the existence of a non-conducting state are all features shared by many ion channels in biological membranes. This makes it possible to use SME channels as a model to study naturally occurring ion channels.  相似文献   
4.
The effects of temperature on the formation and inactivation of syringomycin E (SRE) pores were investigated with human red blood cells (RBCs) and lipid bilayer membranes (BLMs). SRE enhanced the RBC membrane permeability of 86Rb and monomeric hemoglobin in a temperature dependent manner. The kinetics of 86Rb and hemoglobin effluxes were measured at different temperatures and pore formation was found to be only slightly affected, while inactivation was strongly influenced by temperature. At 37 degrees C, SRE pore inactivation began 15 min after and at 20 degrees C, 40 min after SRE addition. At 6 degrees C, below the phase transition temperature of the major lipid components of the RBC membrane, no inactivation occurred for as long as 90 min. With BLMs, SRE induced a large current that remained stable at 14 degrees C, but at 23 degrees C it decreased over time while the single channel conductance and dwell time did not change. The results show that the temperature dependent inactivation of SRE pores is due to a decrease in the number of open pores.  相似文献   
5.
6.
7.
8.
9.
We studied effects of toxins produced by a bacterium Pseudomonas syringae pv. syringae on the conductance of bilayer lipid membranes (BLM). The used toxins were as follows: syringopeptin 22A (SP22A), syringomycin E (SPE), syringostatin A (SSA), syringotoxin B (STB), and methylated syringomycin E (CH3-SRE). All toxins demonstrated channel-forming activity. The threshold sequence for toxin activity was SP22A > SRE approximately equal to SSA > STB > CH3-SRE, and this sequence was independent of lipid membrane composition, and NaCl concentration (pH 6) in the membrane bathing solution (in the range of 0.1-1.0 M). This sequence correlated with relative bioactivities of toxins. In addition, SRE demonstrated a more potent antifungal activity than CH3-SRE. These findings suggest that ion channel formation may underlie the bioactivities of the above toxins. The properties of single ion channels formed by the toxins in BLMs were found to be similar, which points to the similarity in the channel structures. In negatively charged membranes, bathed with diluted electrolyte solutions (0.1 M NaCl), the channels were seen to open with positive transmembrane potentials (V) (from the side of toxin addition), and close with negative potentials. In uncharged membranes the opposite response to a voltage sign was observed. Increasing the NaCl concentration up to 1 M unified the voltage sensitivity of channels in charged and uncharged membranes: channels opened with negative V, and closed with positive V. With all systems, the voltage current curves of single channels were similarly superlinear in the applied voltage and asymmetric in its sign. It was found that the single channel conductance of STB and SSA was higher than that of other toxin channels. All the toxins formed at least two types of ion channels that were multiple by a factor of either 6 or 4 in their conductance. The results are discussed in terms of the structural features of toxin molecules.  相似文献   
10.
Using the planar lipid bilayer technique, organization of ionic channels formed by the lipodepsipeptide antibiotic syringomycin E applied to one (cis) side of a lipid bilayer was studied. Low concentrations of NaCl (0.01-0.1 M) induced the opening and closing of two types of channels - "small" and "large". The large channels had single channel conductances approximately six times greater than those of the small channels. An increase in the NaCl concentration (0.6-1.0 M) decreased almost completely the chance to reveal the large channels. Although the syringomycin channels exhibited the anion selectivity within the entire range of NaCl concentrations in the bathing solutions (from 0.001 to 1.0 M) whereas the concentration gradients across the bilayers were 2 and 4, the transfer numbers for Cl-decreased with an increase in the mean NaCl concentration (from 0.83 for 0.005 M to 0.70 for 0.5 M). Moreover, at each mean value of NaCl concentration, all conductance levels had the same ion selectivity (identical reversal potential). These results suggest that at low NaCl concentrations the large channels are clusters of small channels which synchronously open and close, while at high electrolyte concentrations the screening of the charged groups responsible for channel interactions prevents the cluster formation. A new theoretical approach for the estimation of the channel radius and the number of elementary charges located at its inner surface (based on the experimental curve of the dependence of transfer number on the NaCl concentration) was developed. Based on this theoretical approach, the channel radius equal to 1 nm and one elementary charge located at its inner surface were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号