首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   8篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1978年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.  相似文献   
2.
Gab2, a recently identified docking protein, contains a pleckstrin homology domain and potential binding sites for SH2 and SH3 domain-containing proteins. Gab2 has been shown to support growth, differentiation, and function in a number of haematopoietic cells, although its role in platelets remains to be determined. Here we report that cross-linking of the collagen receptor GPVI by the snake venom toxin convulxin stimulates tyrosine phosphorylation of Gab2. Furthermore, platelet aggregation induced by submaximal concentrations of convulxin is attenuated in the absence of Gab2, although recovery is seen with higher concentrations of the toxin. Consistent with this, tyrosine phosphorylation of Fc receptor gamma-chain, Syk, Btk, and phospholipase Cgamma2 by convulxin is reduced in the absence of Gab2. In comparison, the G protein-coupled receptor agonist, thrombin, does not induce phosphorylation of Gab2 and aggregation is unaltered in the absence of the toxin. These findings provide evidence for a functional role of Gab2 in supporting platelet activation by GPVI.  相似文献   
3.
Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most common cause of dementia among the elderly. Efforts have been made to understand the genetic and epigenetic mechanisms involved in the development of this disease. As SORL1 (sortilin-related receptor) and SIRT1 (sirtuin 1) genes have been linked to AD pathogenesis, we aimed to investigate their mRNA expression and promoter DNA methylation in post mortem brain tissues (entorhinal and auditory cortices and hippocampus) from healthy elderly subjects and AD patients. We also evaluated these levels in peripheral blood leukocytes from young, healthy elderly and AD patients, investigating whether there was an effect of age on these profiles. The comparative CT method by Real Time PCR and MALDI-TOF mass spectrometry were used to analyze gene expression and DNA methylation, respectively. SORL1 gene was differently expressed in the peripheral blood leukocytes and might act as a marker of aging in this tissue. Furthermore, we found that SORL1 promoter DNA methylation might act as one of the mechanisms responsible for the differences in expression observed between blood and brain for both healthy elderly and AD patients groups. The impact of these studied genes on AD pathogenesis remains to be better clarified.  相似文献   
4.

Background

Previously, several studies have shown that Tyro3, Axl, and Mertk (TAM) receptors participate in platelet activation and thrombosis. However, the role of individual receptors is not fully understood.

Methods

Using single receptor-deficient platelets from TAM knockout mice in the C57BL/6?J strain, we performed a knockout study using single TAM-deficient mice. We treated platelets isolated from TAM knockout mice with the Glycoprotein VI (GPVI) agonists convulxin, poly(PHG), and collagen-related triple-helical peptide (CRP), as well as thrombin for in-vitro experiments. We used a laser-induced cremaster arterial injury model for thrombosis experiments in vivo.

Results

Deficiency of the tyrosine kinase receptors, Axl or Tyro3, but not Mertk, inhibited aggregation, spreading, JON/A binding, and P-selectin expression of platelets in vitro. In vivo, platelet thrombus formation was significantly decreased in Axl?/? and Tyro3?/? mice, but not in Mertk?/? mice. Upon stimulation with glycoprotein VI (GPVI) agonists, tyrosine phosphorylation of signaling molecules, including spleen tyrosine kinase (Syk) and phospholipase C-γ2 (PLCγ2), was decreased in Axl?/? and Tyro3?/? platelets, but not in Mertk?/? platelets. While platelet aggregation induced by agonists did not differ in the presence or absence of the Gas6 neutralizing antibody, the platelet aggregation was inhibited by anti-Axl or anti-Tyro3 neutralizing antibodies antibody, but not the anti-Mertk antibody. Additionally, the recombinant extracellular domain of Axl or Tyro3, but not that of Mertk, also inhibited platelet aggregation.

Conclusions

These data suggest that Axl and Tyro3, but not Mertk, have an important role in platelet activation and thrombus formation, and mechanistically may do so by a pathway that regulates inside to outside signaling and heterotypic interactions via the extracellular domains of TAMs.
  相似文献   
5.
We have recently identified C-type lectin-like receptor 2 (CLEC-2) as a receptor for the platelet activating snake venom rhodocytin. CLEC-2 elicits powerful platelet activation signals in conjunction with single YxxL motif in its cytoplasmic tail, Src, Syk kinases, and phospholipase Cγ2. An endogenous ligand of CLEC-2 has been identified as podoplanin, which is a membrane protein of tumour cells and facilitates tumour metastasis by inducing platelet activation. Studies of CLEC-2-deficient mice have revealed several physiological roles of CLEC-2. Podoplanin is also expressed in lymphatic endothelial cells. In the developmental stages, when the primary lymph sac is derived from the cardinal vein, podoplanin activates platelets in lymphatic endothelial cells, which facilitates blood/lymphatic vessel separation. Moreover, CLEC-2 is involved in thrombus stabilization under flow conditions in part through homophilic interactions. The absence of CLEC-2 does not significantly increase bleeding tendency, implying that CLEC-2 may be a good target protein for anti-platelet drugs in addition to anti-metastatic drugs.  相似文献   
6.
Lactobacillus paraplantarum is a species phenotypically close to Lactobacillus plantarum. Several PCR methods were evaluated to discriminate L. paraplantarum strains and among them, a PCR using an enterobacterial repetitive intergenic consensus (ERIC) sequence differentiated L. paraplantarum from other Lactobacillus species. In addition, a combination of ERIC and random amplified polymorphic DNA (RAPD) analysis distinguished among seven strains of L. paraplantarum tested. ERIC-PCR profiles showed several strain-specific DNA fragments in L. paraplantarum, among them, a 2.2-kb ERIC marker, termed LpF1, found to be specific to strain FBA1, which improved the skin integrity in an animal model. The LpF1 encodes three proteins similar to Lactobacillus fermentum AroA, TyrA, and AroK, which are involved in the shikimate pathway. A primer pair specific to FBA1 based on the internal sequence of LpF1 amplified a 950-bp FBA1-specific fragment LpF2. Southern blot analysis of Dra I-digested genomic DNA of L. paraplantarum strains using LpF2 as a probe showed that LpF2 is distinctive of strain FBA1 among 16 L. paraplantarum strains. Because both ERIC- and RAPD-PCR are fast and technically simple methods, they are useful for the rapid discrimination of L. paraplantarum strains and for the development of new strain-specific DNA markers for identifying industrially important strains.  相似文献   
7.
8.
9.
10.
Protein O-linked fucosylation is an unusual glycosylation associated with many important biological functions such as Notch signaling. Two fucosylation pathways synthesizing O-fucosylglycans have been reported on cystein-knotted proteins, that is, on epidermal growth factor-like (EGF-like) domains and on thrombospondin Type 1 repeat (TSR) domains. We report here the molecular cloning and characterization of a novel beta1,3-glucosyltransferase (beta3Glc-T) that synthesizes a Glcbeta1,3Fucalpha- structure on the TSR domain. We found a novel glycosyltransferase gene with beta1,3-glycosyltransferase (beta3GT) motifs in databases. The recombinant enzyme expressed in human embryonic kidney 293T (HEK293T) cells exhibited glucosyltransferase activity toward fucose-alpha-para-nitrophenyl (Fucalpha-pNp). Thin-layer chromatography (TLC) analysis revealed that the product of the recombinant enzyme migrated to the same position as did the product of endogenous beta3Glc-T of Chinese hamster ovary (CHO) cells. The two products could be digested by beta-glucosidase from almond and by exo-1,3-beta-glucanase from Trichoderma sp. These results strongly suggested that the product has the structure of Glcbeta1-3Fuc. Therefore, we named this novel enzyme beta3Glc-T. Immunostaining revealed that FLAG-tagged beta3Glc-T is an enzyme residing in the endoplasmic reticulum (ER) via retention signal, "REEL," which is a KDEL-like sequence, at the C-terminus. The TSR domain expressed in Escherichia coli was first fucosylated by the recombinant protein O-fucosyltransferase 2 (POFUT2), after which it became an acceptor substrate for the recombinant beta3Glc-T, which could apparently transfer Glc to the fucosylated TSR domain. Our results suggest that a novel glycosyltransferase, beta3Glc-T, contributes to the elongation of O-fucosylglycan and that this occurs specifically on TSR domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号