首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   23篇
  314篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   11篇
  2013年   23篇
  2012年   14篇
  2011年   16篇
  2010年   21篇
  2009年   5篇
  2008年   16篇
  2007年   22篇
  2006年   22篇
  2005年   16篇
  2004年   11篇
  2003年   8篇
  2002年   13篇
  2001年   4篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1997年   11篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   4篇
  1986年   8篇
  1984年   5篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1974年   4篇
排序方式: 共有314条查询结果,搜索用时 12 毫秒
1.
2.
Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with 32Pi and L-[U-14C]serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.  相似文献   
3.
A viable insertion mutant of the Sabin strain of type 1 poliovirus was constructed. The mutant carried an insertion sequence of 72 nucleotides at nucleotide position 702 in the 5' non-coding region (742 nucleotides long) of the genome of the Sabin strain. This mutant showed a small-plaque phenotype, as compared with the parental virus. Indeed, the final yield of the mutant in a single cycle of infection was tenfold fewer than that of the parental virus. Many large-plaque variants that are easily generated from the insertion mutant appeared to regain efficient viral replication and have single nucleotide changes. All nucleotide changes observed were limited to within three nucleotides of an AUG sequence in the insertion sequence. The result indicates strongly that the AUG sequence itself in this genome region functions in reducing the plaque size of the parental Sabin type 1 virus. The insertion mutant with a small-plaque phenotype may be the first in vitro mutant of poliovirus whose viability is lowered only by a primary sequence inserted into the 5' non-coding region of the genome. Base substitutions to alter the AUG sequence should largely be the result of errors of the virus-specific replicase, since variants with base substitutions must be subject to only minimum selection pressure. Accordingly, nucleotide sequence analysis of the genome region containing the AUG sequence was performed on a number of genomes of large-plaque variants to investigate types of nucleotide substitutions caused by characteristic errors in RNA replication. Only one transversion mutation was detected in the genomes of 44 independently isolated large-plaque variants with single base changes in the AUG sequence. This result suggests strongly that transition mutations occur predominantly as nucleotide substitutions caused by characteristic errors of poliovirus replicase.  相似文献   
4.
TheLyb-2 locus responsible for the B-lymphocyte alloantigen system Lyb-2 is located on chromosome 4 at a distance of 20.6±4.9 map units fromPgm-2. A three-point cross indicated the orderLyb-2: Mup-1b Pgm-2.  相似文献   
5.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose.  相似文献   
6.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNAIle genes between the 16S and 23S rDNAs, and the other had a tRNAIle genes between the 16S and 23S rDNAs and a tRNAAsn gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   
7.
MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.  相似文献   
8.
Sponges (phylum Porifera) have remarkable regenerative and reconstitutive abilities and represent evolutionarily the oldest metazoans. To investigate sponge stem cell differentiation, we have focused on the asexual reproductive system in the freshwater sponge Ephydatia fluviatilis. During germination, thousands of stem cells proliferate and differentiate to form a fully functional sponge. As an initial step of our investigation of stem cell (archeocyte) differentiation, we isolated molecular markers for two differentiated cell types: spicule-making sclerocyte cells, and cells involved in innate immunity. Sclerocyte lineage-specific Ef silicatein shares 45% to 62% identity with other sponge silicateins. As in situ hybridization of Ef silicatein specifically detects archeocytes possibly committed to sclerocytes, as well as sclerocytes with an immature or mature spicule, therefore covering all the developmental stages, we conclude that Ef silicatein is a suitable sclerocyte lineage marker. Ef lectin, a marker for the cell type involved in innate immunity, shares 59% to 65% identity with the marine sponge Suberites domuncula galactose-binding protein (Sd GBP) and horseshoe crab Tachypleus tridentatus tachylectin1/lectinL6. Since Sd GBP and tachylectin1 are known to bind to bacterial lipopolysaccharides and inhibit the growth of bacteria, Ef lectin may have a similar function and be expressed in a specialized type of cell involved in defense against invading bacteria. Ef lectin mRNA and protein are not expressed in early stages of development, but are detected in late stages. Therefore, Ef lectin may be specifically expressed in differentiating and/or differentiated cells. We suggest Ef lectin as a marker for cells that assume innate immunity in freshwater sponges.  相似文献   
9.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号