首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   118篇
  国内免费   1篇
  1603篇
  2024年   2篇
  2023年   17篇
  2022年   33篇
  2021年   61篇
  2020年   42篇
  2019年   42篇
  2018年   29篇
  2017年   37篇
  2016年   65篇
  2015年   123篇
  2014年   104篇
  2013年   118篇
  2012年   180篇
  2011年   134篇
  2010年   93篇
  2009年   65篇
  2008年   83篇
  2007年   104篇
  2006年   72篇
  2005年   65篇
  2004年   39篇
  2003年   39篇
  2002年   23篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
  1981年   2篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1603条查询结果,搜索用时 15 毫秒
1.
In this study, we examined the effects that antifreeze proteins have on the supercooling and ice-nucleating abilities of aqueous solutions. Very little information on such nucleation currently exists. Using an automated lag time apparatus and a new analysis, we show several dilution series of Type I antifreeze proteins. Our results indicate that, above a concentration of ∼8 mg/ml, ice nucleation is enhanced rather than hindered. We discuss this unexpected result and present a new hypothesis outlining three components of polar fish blood that we believe affect its solution properties in certain situations.  相似文献   
2.
The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.  相似文献   
3.
Developing organisms are often exposed to fluctuating environments that destabilize tissue-scale processes and induce abnormal phenotypes. This might be common in species that lay eggs in the external environment and with little parental care, such as many reptiles. In turtles, morphological development has provided striking examples of abnormal phenotypic patterns, though the influence of the environment remains unclear. To this end, we compared fluctuating asymmetry, as a proxy for developmental instability, in turtle hatchlings incubated in controlled laboratory and unstable natural conditions. Wild and laboratory hatchlings featured similar proportions of supernumerary scales (scutes) on the dorsal shell (carapace). Such abnormal scutes likely elevated shape asymmetry, which was highest in natural nests. Moreover, we tested the hypothesis that hot and dry environments cause abnormal scute formation by subjecting eggs to a range of hydric and thermal laboratory incubation regimes. Shape asymmetry was similar in hatchlings incubated at five constant temperatures (26–30°C). A hot (30°C) and severely Dry substrate yielded smaller hatchlings but scutes were not overtly affected. Our study suggests that changing nest environments contribute to fluctuating asymmetry in egg-laying reptiles, while clarifying the conditions at which turtle shell development remains buffered from the external environment.  相似文献   
4.
Population declines of disturbance-dependent species due to suppression of natural disturbances are realized across ecosystems. The piping plover (Charadrius melodus; plover), a disturbance-dependent and conservation-reliant shorebird that nests on sandy beaches and barrier islands on the Atlantic Coast, was listed under the United States Endangered Species Act in 1986. In 2012, Hurricane Sandy landed on Fire and Westhampton islands, barrier island nesting sites for plovers in New York, USA. Hurricane Sandy was a natural disturbance in this system, creating abundant nesting habitat. The number of chicks produced by a pair, or a population, is a direct measure of reproductive output, and gaining a better understanding of productivity and chick behavior following large-scale habitat creation may improve plover habitat management and potentially species persistence. We evaluated the effects of landscape features on habitat selection, behavior, and survival of plover broods using logistic regression, generalized linear mixed effects models, and survival models. Plover broods selected flatter sites with less dense vegetation than available at random. Chick foraging rates were highest in moist substrates and were lower in areas of higher nesting plover density. Chick survival was greater for broods that hatched earlier in the breeding season and increased as chicks aged. Generally, providing access to sites with flatter, moist substrates will likely result in higher quality brood rearing habitat on the landscape. Ultimately, vegetation removal and habitat management may be needed to reduce plover nesting density and ensure sufficient habitat, which may in turn improve plover chick survival. Moreover, sustaining natural landscape disturbances such as those resulting from storms, and not taking actions to prevent hurricane-created overwash, will allow these landscape features to persist.  相似文献   
5.
The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.  相似文献   
6.
Neuronal hippocampal Ca2+ dysregulation is a critical component of cognitive decline in brain aging and Alzheimer''s disease and is suggested to impact communication and excitability through the activation of a larger after hyperpolarization. However, few studies have tested for the presence of Ca2+ dysregulation in vivo, how it manifests, and whether it impacts network function across hundreds of neurons. Here, we tested for neuronal Ca2+ network dysregulation in vivo in the primary somatosensory cortex (S1) of anesthetized young and aged male Fisher 344 rats using single‐cell resolution techniques. Because S1 is involved in sensory discrimination and proprioception, we tested for alterations in ambulatory performance in the aged animal and investigated two potential pathways underlying these central aging‐ and Ca2+‐dependent changes. Compared to young, aged animals displayed increased overall activity and connectivity of the network as well as decreased ambulatory speed. In aged animals, intranasal insulin (INI) increased network synchronicity and ambulatory speed. Importantly, in young animals, delivery of the L‐type voltage‐gated Ca2+ channel modifier Bay‐K 8644 altered network properties, replicating some of the changes seen in the older animal. These results suggest that hippocampal Ca2+ dysregulation may be generalizable to other areas, such as S1, and might engage modalities that are associated with locomotor stability and motivation to ambulate. Further, given the safety profile of INI in the clinic and the evidence presented here showing that this central dysregulation is sensitive to insulin, we suggest that these processes can be targeted to potentially increase motivation and coordination while also reducing fall frequency with age.  相似文献   
7.
The importance of DNA methylation in mammalian and plant systems is well established. In recent years there has been renewed interest in DNA methylation in insects. Accumulating evidence, both from mammals and insects, points towards an emerging role for DNA methylation in the regulation of phenotypic plasticity. The migratory locust (Locusta migratoria) is a model organism for the study of phenotypic plasticity. Despite this, there is little information available about the degree to which the genome is methylated in this species and genes encoding methylation machinery have not been previously identified. We therefore undertook an initial investigation to establish the presence of a functional DNA methylation system in L. migratoria. We found that the migratory locust possesses genes that putatively encode methylation machinery (DNA methyltransferases and a methyl-binding domain protein) and exhibits genomic methylation, some of which appears to be localised to repetitive regions of the genome. We have also identified a distinct group of genes within the L. migratoria genome that appear to have been historically methylated and show some possible functional differentiation. These results will facilitate more detailed research into the functional significance of DNA methylation in locusts.  相似文献   
8.
9.
10.
Certain species of the marine diatom genus Pseudo‐nitzschia are responsible for the production of the domoic acid (DA), a neurotoxin that can bioaccumulate in the food chain and cause amnesic shellfish poisoning (ASP) in animals and humans. This study extends our knowledge by reporting on the first observation of the potentially toxic species Pseudo‐nitzschia simulans from this region. One clonal strain of P. simulans was isolated from the East Australian Current and characterized using light and transmission electron microscopy, and phylogenetic analyses based on regions of the internal transcribed spacer (ITS) and the D1–D3 region of the large subunit (LSU) of the nuclear‐encoded ribosomal deoxyribonucleic acid (rDNA), as well as examined for DA production as measured by liquid chromatography–mass spectrometry. Although this strain was non‐toxic under the defined growth conditions, the results unambiguously confirmed that this isolate is the potentially toxic species P. simulans – the first report of this species from the Southern Hemisphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号