首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4999篇
  免费   462篇
  国内免费   2篇
  2023年   24篇
  2022年   33篇
  2021年   91篇
  2020年   62篇
  2019年   98篇
  2018年   117篇
  2017年   103篇
  2016年   153篇
  2015年   224篇
  2014年   251篇
  2013年   309篇
  2012年   321篇
  2011年   323篇
  2010年   209篇
  2009年   199篇
  2008年   262篇
  2007年   235篇
  2006年   226篇
  2005年   187篇
  2004年   183篇
  2003年   204篇
  2002年   179篇
  2001年   113篇
  2000年   114篇
  1999年   84篇
  1998年   62篇
  1997年   38篇
  1996年   44篇
  1995年   32篇
  1994年   38篇
  1993年   38篇
  1992年   62篇
  1991年   47篇
  1990年   48篇
  1989年   53篇
  1988年   53篇
  1987年   32篇
  1986年   48篇
  1985年   40篇
  1984年   33篇
  1983年   28篇
  1982年   29篇
  1981年   23篇
  1980年   25篇
  1979年   41篇
  1978年   29篇
  1977年   29篇
  1974年   29篇
  1973年   28篇
  1972年   25篇
排序方式: 共有5463条查询结果,搜索用时 15 毫秒
1.
We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.  相似文献   
2.
3.
Abstract: Pharmacologically active agents were employed to study the mechanisms that control the reduction in levels of acetyl-coA: arylamine N-acetyltransferase activity (NAT) (EC 2.3.1.5) in the rat pineal. Pretreatment of rats with phenoxybenzamine or phentolamine prevented the rapid light-mediated decrease in NAT activity, although pretreatment with yohimbine or atropine did not alter this effect of light. Administration of mecamylamine resulted in a rapid reduction in enzyme activity prior to light exposure. When clonidine was administered intraperitoneally to animals with elevated NAT levels, there was a rapid decrease in enzyme activity, mimicking the effects of light. However, intraperitoneal injections of norepinephrine, methoxamine and phenylephrine into similar groups of animals had no significant effect on enzyme acitivity. When clonidine and norepinephrine were administered intraventricularly, there was a rapid reduction in enzyme activity. On the other hand, intraventricular administration of phenylephrine did not result in reduced enzyme activity. Pretreatment of animals with phenoxybenzamine failed to block the reduction in NAT activity precipitated by low doses of clonidine. This clonidine-mediated reduction in enzyme activity was, however, blocked by yohimbine. When animals were simultaneously exposed to light and administered clonidine, the rapid reduction in NAT activity was affected only when animals were pretreated with both yohimbine and phenoxybenzamine. In contrast to the decrease in pineal NAT activity observed in in vivo preparations, incubation of pineals with clonidine in an organ culture system produced a moderate, but consistent, rise in enzyme activity. These results suggest that stimulation of a receptor with α-adrenergic characteristics mediates the reduction in NAT activity produced by light. Stimulation of yet a second adrenergic-like receptor appears to mediate a reduction in pineal NAT activity precipitated by clonidine. Our evidence suggests that one or both of these receptors are located within the central nervous system.  相似文献   
4.
The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39°S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19°C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15°C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation to negative physiological impacts, and that this may also be the case for other benthic organisms.  相似文献   
5.
6.
7.
Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.  相似文献   
8.
9.
10.
Membrane proteins are currently the most biomedically important family of proteins, serving as targets for the majority of pharmaceutical agents. It is also clear that they are invariably abundant in all of the genomes sequence so far, representing up to a third of all open reading frames. Finally, and regrettably, it is clear that they are highly resistant to structural elucidation, representing less than 0.2% of the Protein Data Bank. Recent accomplishments in genome sequencing efforts, however, may help offset this imbalance through the availability of evolutionary conservation data. Herein, we develop a novel approach, utilizing a combination of evolutionary conservation data and global searching molecular dynamics simulations to model membrane proteins, deriving a model for the multidrug H+ antiporter EmrE, a transmembrane four-helix bundle. Structures resulting from an extensive, rotational molecular dynamics search, were evaluated by comparing the residue specific interaction energy and the evolutionary conservation data. Subsequent rounds of molecular dynamics, in which confinement of the search space was undertaken in order to achieve a self consistent result, point to a structure that best satisfies the evolutionary conservation data. As the conservation patterns calculated for each of the helices suggested that the different conservation pattern for helix 3 (as well as being the most conserved) might be due to the oligomeric nature of EmrE, a dodecamer of helices was constructed based on the result of a search of helix 3 as a trimer. The resulting interaction energy per residue in the final model is in reasonable agreement with the evolutionary data and consistent with recent site directed mutagenesis experiments, pointing to the strength of this method as a general tool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号