首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   136篇
  国内免费   2篇
  2023年   7篇
  2022年   24篇
  2021年   47篇
  2020年   28篇
  2019年   27篇
  2018年   40篇
  2017年   31篇
  2016年   63篇
  2015年   115篇
  2014年   109篇
  2013年   114篇
  2012年   199篇
  2011年   156篇
  2010年   97篇
  2009年   72篇
  2008年   108篇
  2007年   101篇
  2006年   94篇
  2005年   66篇
  2004年   69篇
  2003年   65篇
  2002年   46篇
  2001年   8篇
  2000年   10篇
  1999年   15篇
  1998年   13篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   13篇
  1993年   7篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   12篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1829条查询结果,搜索用时 125 毫秒
1.
2.
3.
A rapid and simple purification method was used to separate and purify nitrate reductases (NR) from Williams soybean leaves. Blue Sepharose columns were sequentially eluted with 50 millimolar NADPH and 50 millimolar NADH, thus separating NAD(P)H:NR from NADH:NRs. Subsequent purification of the collected peaks on a fast protein liquid chromatography-Mono Q column enabled separation of two NADH:NRs. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the subunit relative molecular mass for all three NR forms (constitutive NAD(P)H:NR [pH 6.5], EC 1.6.6.2; constitutive NADH:NR [pH 6.5], EC not assigned; and inducible NADH:NR [pH 7.5], EC 1.6.6.1) was approximately 107 to 109 kilodaltons. All three NRs showed similar spectra with absorption maxima at 413 and 273 nanometers in the oxidized state, and with the characteristics of a cytochrome b type heme upon reduction with NADH (absorption maxima at 556, 527, and 424 nanometers). The technique developed provides an improved separation of the three NR forms from soybean leaves. The similarity of the NRs with regard to their cytochrome b556 type heme content and in relative molecular mass indicated that other differences must exist to account for the different kinetic and physical properties previously reported.  相似文献   
4.
Structure of a mouse histone-encoding gene cluster   总被引:5,自引:0,他引:5  
  相似文献   
5.
Summary A method for the rapid determination of the lengths and surface areas of very large samples of needles of Picea abies (L.) Karst. using a computer-aided image analysis system was developed. Two independent methods for measuring non-destructively the volumes of individual needles and of all needles attached to a twig were devised. The surface areas and lengths of about 38000 needles sampled from the three youngest needle age-classes (1986, 1985, 1984) of 48 trees approximately 130 years old at four sites in the Fichtelgebirge mountains (N. E. Bavaria, FRG) were measured. The frequency distributions of lengths and areas for each site and age-class are given. Variability of needle size was fairly large. Even though the sites differed in climate, soil, and air pollution levels no consistent effect of these factors on needle size could be detected. Needle lengths and surface areas did not correlate with either the total chlorophyll content of the needles or the degree of crown thinning. The needle surface area (in mm2) of fully developed P. abies needles can be estimated by the empirical equation surface area = 4.440 x needle length -24.8 (r = 0.937), and the needle volume (in mm3) by needle volume = 0.208 x projected needle area 1.353 (r = 0.969).  相似文献   
6.
Histone RNA 3' end formation occurs through a specific cleavage reaction that requires, among other things, base-pairing interactions between a conserved spacer element in the pre-mRNA and the minor U7 snRNA present as U7 snRNP. An oligonucleotide complementary to the first 16 nucleotides of U7 RNA can be used to characterize U7 snRNPs from nuclear extracts by native gel electrophoresis. Using similar native gel techniques, we present direct biochemical evidence for a stable association between histone pre-mRNA and U7 snRNPs. Other complexes formed in the nuclear extract are dependent on the 5' cap structure and on the conserved hairpin element of histone pre-mRNA, respectively. However, in contrast to the U7-specific complex, their formation is not required for processing. Comparison of several authentic and mutant histone pre-mRNAs with different spacer sequences demonstrates that the formation and stability of the U7-specific complex closely follows the predicted stability of the potential RNA-RNA hybrid. However, this does not exclude a stabilization of the complex by U7 snRNP structural proteins.  相似文献   
7.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   
8.
NADH:nitrate reductase (EC 1.6.6.1) and NAD(P)H:nitrate reductase (EC 1.6.6.2) were purified from wild-type soybean (Glycine max [L.] Merr., cv Williams) and nr1-mutant soybean plants. Purification included Blue Sepharose- and hydroxylapatite-column chromatography using acetone powders from fully expanded unifoliolate leaves as the enzyme source.

Two forms of constitutive nitrate reductase were sequentially eluted with NADPH and NADH from Blue Sepharose loaded with extract from wild-type plants grown on urea as sole nitrogen source. The form eluted with NADPH was designated c1NR, and the form eluted with NADH was designated c2NR. Nitrate-grown nr1 mutant soybean plants yielded a NADH:nitrate reductase (designated iNR) when Blue Sepharose columns were eluted with NADH; NADPH failed to elute any NR form from Blue Sepharose loaded with this extract. Both c1NR and c2NR had similar pH optima of 6.5, sedimentation behavior (s20,w of 5.5-6.0), and electrophoretic mobility. However, c1NR was more active with NADPH than with NADH, while c2NR preferred NADH as electron donor. Apparent Michaelis constants for nitrate were 5 millimolar (c1NR) and 0.19 millimolar (c2NR). The iNR from the mutant had a pH optimum of 7.5, s20,w of 7.6, and was less mobile on polyacrylamide gels than c1NR and c2NR. The iNR preferred NADH over NADPH and had an apparent Michaelis constant of 0.13 millimolar for nitrate.

Thus, wild-type soybean contains two forms of constitutive nitrate reductase, both differing in their physical properties from nitrate reductases common in higher plants. The inducible nitrate reductase form present in soybeans, however, appears to be similar to most substrateinduced nitrate reductases found in higher plants.

  相似文献   
9.
Soybean (Glycine max [L.] Merr.) leaves have been shown to contain three forms of nitrate reductase (NR). Two of the forms, which are present in leaves of wild-type (cv. Williams) plants grown in the absence of NO3, are termed constitutive and designated c1NR and c2NR. The third form, which is present in NO3-grown mutant (nr1) plants lacking the constitutive forms, is termed inducible and designated iNR. Samples of c1NR, c2NR, and iNR obtained from appropriately treated plants were analyzed for the presence of partial activities, response to inhibitors, and ability to complement a barley NR which lacks the molybdenum cofactor (MoCo) but is otherwise active.

The three forms were similar to most assimilatory NR enzymes in that they (a) exhibited NADH-cytochrome c reductase, reduced flavin mononucleotide-NR, and reduced methyl viologen-NR partial activities; (b) were inhibited by p-hydroxymercuribenzoate at the site of initial electron transport through each enzyme; (c) were more inhibited by CN in their reduced enzyme state as compared with their oxidized state; and (d) complemented a MoCo-defective NR (e.g. contained cofactors with characteristics similar to the MoCo found in barley NR and commercial xanthine oxidase). However, among themselves, they showed dissimilarities in their response to treatment with HCO3 and CN, and in their absolute ability to complement the barley NR. The site of effect for these treatments was the terminal cofactor-containing portion of each enzyme. This indicated that, although a terminal cofactor (presumably a MoCo) was present in each form, structural or conformational differences existed in the terminal cofactor-protein complex of each form.

  相似文献   
10.
1. Mammalian erythrocytes swell as the pH of the isotonic suspending medium is lowered, as a direct consequence of the specialized permeability properties of the erythrocyte membrane. Lymphocytes and granulocytes from a variety of sources did not exhibit this property. 2. The behaviour of mouse bone marrow erythroid cells at various stages of differentiation was studied by using a change in buoyant density with pH as an index of swelling. The ability to swell with a pH drop was acquired while the cell was still nucleated. All non-nucleated cells showed swelling. Most small erythroblasts shared this property, whereas most large erythroblasts did not. 3. The density shift with pH was used to provide a purification scheme specific for erythroid cells. The bone marrow cells were first centrifuged to equilibrium in an isotonic albumin density gradient at neutral pH. Regions of the gradient containing the erythroid cells were collected, and the cells were recovered and redistributed in an albumin gradient at acid pH. The erythroid cells showed a specific density shift which removed them from contaminants. Preparations containing 90–97% erythroblasts were obtained by this technique. 4. Differentiation within the erythroid series was accompanied by a general increase in cell buoyant density at neutral pH. This density increase may have been a discontinuous process, since erythroid cells appeared to form a number of density peaks. 5. The pH shift technique, in association with established density distribution and sedimentation velocity procedures, provides a range of cell separation techniques for biological or biochemical studies of erythroid cell differentiation in the complex cell mixtures in bone marrow or spleen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号