全文获取类型
收费全文 | 6760篇 |
免费 | 330篇 |
国内免费 | 3篇 |
专业分类
7093篇 |
出版年
2024年 | 45篇 |
2023年 | 48篇 |
2022年 | 124篇 |
2021年 | 235篇 |
2020年 | 102篇 |
2019年 | 140篇 |
2018年 | 148篇 |
2017年 | 105篇 |
2016年 | 216篇 |
2015年 | 376篇 |
2014年 | 346篇 |
2013年 | 419篇 |
2012年 | 585篇 |
2011年 | 518篇 |
2010年 | 323篇 |
2009年 | 249篇 |
2008年 | 359篇 |
2007年 | 387篇 |
2006年 | 331篇 |
2005年 | 302篇 |
2004年 | 297篇 |
2003年 | 258篇 |
2002年 | 231篇 |
2001年 | 56篇 |
2000年 | 48篇 |
1999年 | 50篇 |
1998年 | 69篇 |
1997年 | 36篇 |
1996年 | 33篇 |
1995年 | 32篇 |
1994年 | 46篇 |
1993年 | 30篇 |
1992年 | 37篇 |
1991年 | 30篇 |
1990年 | 25篇 |
1989年 | 30篇 |
1988年 | 22篇 |
1987年 | 17篇 |
1986年 | 20篇 |
1985年 | 22篇 |
1984年 | 24篇 |
1983年 | 25篇 |
1982年 | 18篇 |
1980年 | 15篇 |
1978年 | 24篇 |
1976年 | 16篇 |
1975年 | 20篇 |
1972年 | 16篇 |
1971年 | 17篇 |
1969年 | 13篇 |
排序方式: 共有7093条查询结果,搜索用时 15 毫秒
1.
Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells.
Michael D Matchett Shawna L MacKinnon Marva I Sweeney Katherine T Gottschall-Pass Robert A R Hurta 《Biochimie et biologie cellulaire》2005,83(5):637-643
Regulation of the matrix metalloproteinases (MMPs), the major mediators of extracellular matrix (ECM) degradation, is crucial to regulate ECM proteolysis, which is important in metastasis. This study examined the effects of 3 flavonoid-enriched fractions (a crude fraction, an anthocyanin-enriched fraction, and a proanthocyanidin-enriched fraction), which were prepared from lowbush blueberries (Vaccinium angustifolium), on MMP activity in DU145 human prostate cancer cells in vitro. Using gelatin gel electrophoresis, MMP activity was evaluated from cells after 24-hr exposure to blueberry fractions. All fractions elicited an ability to decrease the activity of MMP-2 and MMP-9. Of the fractions tested, the proanthocyanidin-enriched fraction was found to be the most effective at inhibiting MMP activity in these cells. No induction of either necrotic or apoptotic cell death was noted in these cells in response to treatment with the blueberry fractions. These findings indicate that flavonoids from blueberry possess the ability to effectively decrease MMP activity, which may decrease overall ECM degradation. This ability may be important in controlling tumor metastasis formation. 相似文献
2.
Katherine R. Ona Charmain T. Courcelle Justin Courcelle 《Journal of bacteriology》2009,191(15):4959-4965
Nitrofurazone is reduced by cellular nitroreductases to form N2-deoxyguanine (N2-dG) adducts that are associated with mutagenesis and lethality. Much attention recently has been given to the role that the highly conserved polymerase IV (Pol IV) family of polymerases plays in tolerating adducts induced by nitrofurazone and other N2-dG-generating agents, yet little is known about how nitrofurazone-induced DNA damage is processed by the cell. In this study, we characterized the genetic repair pathways that contribute to survival and mutagenesis in Escherichia coli cultures grown in the presence of nitrofurazone. We find that nucleotide excision repair is a primary mechanism for processing damage induced by nitrofurazone. The contribution of translesion synthesis to survival was minor compared to that of nucleotide excision repair and depended upon Pol IV. In addition, survival also depended on both the RecF and RecBCD pathways. We also found that nitrofurazone acts as a direct inhibitor of DNA replication at higher concentrations. We show that the direct inhibition of replication by nitrofurazone occurs independently of DNA damage and is reversible once the nitrofurazone is removed. Previous studies that reported nucleotide excision repair mutants that were fully resistant to nitrofurazone used high concentrations of the drug (200 μM) and short exposure times. We demonstrate here that these conditions inhibit replication but are insufficient in duration to induce significant levels of DNA damage.Replication in the presence of DNA damage is thought to produce most of the mutagenesis, genomic rearrangements, and lethality that occur in all cells. UV-induced photoproducts, X-ray-induced strand breaks, psoralen- or cis-platin-interstrand cross-links, oxidized bases from reactive oxygen species, and base depurination are just a few of the structurally distinct challenges that the replication machinery must overcome. It seems likely that the mechanisms that process these lesions will vary depending on the nature of the impediment.While a number of the lesions described above are known to block replication, the events associated with UV-induced damage have been the most extensively characterized. UV irradiation causes the formation of cyclobutane pyrimidine dimers and 6-4 photoproducts in DNA that block the progression of the replication fork (16, 29, 30, 37). Following the arrest of replication at UV-induced damage, RecA and several RecF pathway proteins are required to process the replication fork such that the blocking lesion is removed or bypassed (2, 5, 6, 8-10). Cells lacking either RecA or any of several RecF pathway proteins are hypersensitive to UV-induced damage and fail to recover replication following disruption by the lesions (2, 6, 10). RecBCD is an exonuclease/helicase complex that is involved in repairing double-strand breaks (38). It also is required for resistance to UV-induced damage, although it is not required to process or restore disrupted replication forks, and the substrates it acts upon after UV irradiation currently remain unclear (3, 10, 19).Survival and the ability to resume DNA synthesis following UV-induced damage depend predominantly on the removal of the lesions by nucleotide excision repair (5, 7, 36). Cells deficient in nucleotide excision repair are unable to remove UV-induced DNA lesions and exhibit elevated levels of mutagenesis, strand exchanges, rearrangements, and cell lethality (16, 33, 34). In cases where replication fork processing or lesion repair is prevented, the recovery of replication and survival become entirely dependent on translesion synthesis by DNA polymerase V (Pol V) (6). However, in repair-proficient cells, the contribution of translesion synthesis to recovery and survival is minor and is detected only following UV doses that exceed the repair capacity of the cell (5, 6).Less is known about how replication recovers from other forms of DNA damage. We chose to characterize nitrofurazone, because a number of studies suggested that N2-deoxyguanine (N2-dG) adducts induced by this and other agents would be processed differently than UV-induced lesions. Nitrofurazone is a topical antibacterial agent that historically has been used for treating burns and skin grafts in patients and animals (14, 15, 32). Nitrofurazone toxicity is known to require activation by cellular nitroreductases (25, 42). However, the mechanism and targets of its antimicrobial properties have yet to be fully elucidated. In addition to its antimicrobial properties, the reduced nitrofurazone metabolites also target DNA and have been shown to induce free radical damage, strand breaks, and N2-dG adducts (26, 40, 42, 45), and they are mutagenic and carcinogenic in rodent models (1, 15, 24, 39).Whereas nucleotide excision repair is the predominant mechanism required for survival after UV-induced damage, a number of studies suggest that translesion synthesis plays a larger role in survival after nitrofurazone-induced DNA damage. dinB mutants lacking Pol IV were shown to be hypersensitive to nitrofurazone compared to cells that constitutively express the polymerase (17). Biochemically, Pol IV and a number of Pol IV homologs from other organisms have been shown to efficiently replicate over a range of N2-dG adducts in vitro (17, 35, 44). In addition, several studies have reported that uvrA mutants, which are defective in nucleotide excision repair, do not exhibit any hypersensitivity to nitrofurazone or other agents that induce similar adducts in vivo (12, 21, 27). Early studies also observed a direct correlation between nitrofurazone-induced mutations and lethality, suggesting that mutagenic lesions persist in the DNA to cause toxicity (21, 23, 27, 43). Consistent with these observations, nitrofuran-induced lesions were found to be poor substrates for nucleotide excision repair in vitro (46).Taken together, these observations suggest to us that the cellular response to nitrofurazone will be distinct from its response to UV irradiation. However, no study has examined the relative contributions that nucleotide excision repair, translesion synthesis, or recombination has in recovering from nitrofurazone-induced damage. In this study, we characterized the mechanism by which nitrofurazone inhibits DNA replication and identified the genes that contribute to the recovery, survival, and mutagenesis of Escherichia coli treated with nitrofurazone. In contrast to previous studies, we found that survival following nitrofurazone-induced damage depends predominantly on nucleotide excision repair. Similarly to UV-induced DNA damage, both the RecF and RecBC pathways contribute to survival following nitrofurazone-induced DNA damage. The contribution of translesion polymerases to survival was minor and was mediated by Pol IV. In addition, we found that nitrofurazone can act to inhibit DNA replication directly when used at higher concentrations. The direct inhibition of replication is reversible and occurs independently of DNA damage, suggesting that DNA is not the primary target of its antimicrobial properties. 相似文献
3.
RAPD markers were used to examine the degree of genetic variation within the putatively asexual basidiomycete fungus (Lepiotaceae: provisionally named Leucoagaricus gongylophorus) associated with the leaf-cutting ant species Atta cephalotes. We analyzed fungal isolates from ant nests in two geographically distant sites, two isolates from Panama and five isolates from Trinidad. Ten decamer primers were used to amplify total DNA from these seven fungal isolates, and RAPD banding patterns were compared. Genetic similarity among isolates was determined by pair-wise comparisons of the shared number of DNA bands on an agarose gel. There was considerable genetic variation among isolates of the symbiotic fungus even within sites. Pairs of fungal isolates from the two different sites shared an average of only 36% of the bands in their RAPD profiles, while pairs from the within sites shared an average of 72% of the bands. RAPD markers may be useful for further investigation of the genetic structure of the fungal symbiont within species of leaf-cutting ants. 相似文献
4.
O'Rand MG Widgren EE Hamil KG Silva EJ Richardson RT 《Biochemical Society transactions》2011,39(5):1447-1449
Our laboratory has characterized EPPIN [epididymal protease inhibitor; SPINLW1] as a novel gene on human chromosome 20q12-13.2, which encodes a cysteine-rich protein of 133 amino acids with a calculated molecular mass of 15.283?kDa, containing both Kunitz-type and WAP (whey acidic protein)-type four-disulfide core consensus sequences. Eppin is secreted by Sertoli cells in the testis and epididymal epithelial cells; it is predominantly a dimer, although multimers often exist, and in its native form eppin is found on the human sperm surface complexed with LTF (lactotransferrin) and clusterin. During ejaculation SEMG (semenogelin) from the seminal vesicles binds to the eppin protein complex, initiating a series of events that define eppin's function. Eppin's functions include (i) modulating PSA (prostate-specific antigen) enzyme activity, (ii) providing antimicrobial protection and (iii) binding SEMG thereby inhibiting sperm motility. As PSA hydrolyses SEMG in the ejaculate coagulum, spermatozoa gain progressive motility. We have demonstrated that eppin is essential for fertility because immunization of male monkeys with recombinant eppin results in complete, but reversible, contraception. To exploit our understanding of eppin's function, we are developing compounds that inhibit eppin-SEMG interaction and mimic anti-eppin, inhibiting sperm motility. These compounds should have potential as a male contraceptive. 相似文献
5.
Experiments involving investigation of the neuroendocrine basis for paternal care in rodents risk activation of aggressive behavior toward pups. To minimize pain and suffering during tests of parental responsiveness requiring retrieval of a displaced pup to its nest, a method of anesthetizing the pup was developed in Djungarian hamsters, Phodopus campbelli. A surgical plane of anesthesia, as measured by criteria, such as respiratory depression, loss of the pedal reflex, and failure to increase respiratory rate or to vocalize in response to handling, was achieved by use of intraperitoneal administration of a combination of ketamine and xylazine. Both parents (tested separately) expressed normal behavior toward anesthetized pups. In random order, a saline-injected or anesthetized pup was displaced from its nest in the home cage. There were no differences in pick-up or retrieval rates between saline and anesthetized pups for either parent. A third test using an unmanipulated pup confirmed that parental behavior was not reduced toward an anesthetized pup. However, if anesthetized pups were tested first among littermates, retrieval by males was less likely. This method will, therefore, underestimate retrieval behavior in males, but not females. Adult male hamsters that had never been parents also expressed expected behavior by attacking the pup in 45% of cases. This method provides an efficient and effective means of protecting pups while allowing adults to express a wide range of parental and infanticidal behaviors. It also has application in behavioral screening of transgenic strains toward unrelated young. 相似文献
6.
Yifei Jiang Raymund Y. K. Pun Katrina Peariso Katherine D. Holland Qingquan Lian Steve C. Danzer 《PloS one》2015,10(9)
There is a clear link between epilepsy and depression. Clinical data demonstrate a 30–35% lifetime prevalence of depression in patients with epilepsy, and patients diagnosed with depression have a three to sevenfold higher risk of developing epilepsy. Traditional epilepsy models partially replicate the clinical observations, with the demonstration of depressive traits in epileptic animals. Studies assessing pro-epileptogenic changes in models of depression, however, are more limited. Here, we examined whether a traditional rodent depression model—bilateral olfactory bulbectomy—predisposes the animals towards the development of epilepsy. Past studies have demonstrated increased neuronal excitability after bulbectomy, but continuous seizure monitoring had not been conducted. For the present study, we monitored control and bulbectomized animals by video-EEG 24/7 for approximately two weeks following the surgery to determine whether they develop spontaneous seizures. All seven bulbectomized mice exhibited seizures during the monitoring period. Seizures began about one week after surgery, and occurred in clusters with severity increasing over the monitoring period. These results suggest that olfactory bulbectomy could be a useful model of TBI-induced epilepsy, with advantages of relatively rapid seizure onset and a high number of individuals developing the disease. The model may also be useful for investigating the mechanisms underlying the bidirectional relationship between epilepsy and depression. 相似文献
7.
8.
Cui W Paglialunga S Kalant D Lu H Roy C Laplante M Deshaies Y Cianflone K 《American journal of physiology. Endocrinology and metabolism》2007,293(6):E1482-E1491
Acylation-stimulating protein (ASP), a lipogenic hormone, stimulates triglyceride (TG) synthesis and glucose transport upon activation of C5L2, a G protein-coupled receptor. ASP-deficient mice have reduced adipose tissue mass due to increased energy expenditure despite increased food intake. The objective of this study was to evaluate the blocking of ASP-C5L2 interaction via neutralizing antibodies (anti-ASP and anti-C5L2-L1 against C5L2 extracellular loop 1). In vitro, anti-ASP and anti-C5L2-L1 blocked ASP binding to C5L2 and efficiently inhibited ASP stimulation of TG synthesis and glucose transport. In vivo, neither anti-ASP nor anti-C5L2-L1 altered body weight, adipose tissue mass, food intake, or hormone levels (insulin, leptin, and adiponectin), but they did induce a significant delay in TG clearance [P < 0.0001, 2-way repeated-measures (RM) ANOVA] and NEFA clearance (P < 0.0001, 2-way RM ANOVA) after a fat load. After treatment with either anti-ASP or anti-C5L2-L1 antibody there was no change in adipose tissue AMPK activity, but neutralizing antibodies decreased perirenal TG mass (-38.4% anti-ASP, -18.8% anti-C5L2, P < 0.01-0.001) and perirenal LPL activity (-75.6% anti-ASP, -72.5% anti-C5L2, P < 0.05). In liver, anti-C5L2-L1 decreased TG mass (-42.8%, P < 0.05), whereas anti-ASP increased AMPK activity (+34.6%, P < 0.001). In the muscle, anti-C5L2-L1 significantly increased TG mass (+128.0%, P < 0.05), LPL activity (+226.1%, P < 0.001), and AMPK activity (+71.1%, P < 0.01). In addition, anti-ASP increased LPL activity (+164.4, P < 0.05) and AMPK activity (+53.9%, P < 0.05) in muscle. ASP/C5L2-neutralizing antibodies effectively block ASP-C5L2 interaction, altering lipid distribution and energy utilization. 相似文献
9.
Heise N Gutierrez AL Mattos KA Jones C Wait R Previato JO Mendonça-Previato L 《Glycobiology》2002,12(7):409-420
Complex glycoinositolphosphoryl ceramides (GIPCs) have been purified from a pathogenic encapsulated wild-type (WT) strain of Cryptococcus neoformans var. neoformans and from an acapsular mutant (Cap67). The structures of the GIPCs were determined by a combination of tandem mass spectrometry, nuclear magnetic resonance spectroscopy, methylation analysis, gas chromatography-mass spectrometry, and chemical degradation. The main GIPC from the WT strain had the structure Manp(alpha1-3)[Xylp(beta1-2)] Manp(alpha1-4)Galp(beta1-6)Manp(alpha1-2)Ins-1-phosphoryl ceramide (GIPC A), whereas the compounds from the acapsular mutant were more heterogeneous in their glycan chains, and variants with Manp(alpha1-6) (GIPC B), Manp(alpha1-6) Manp(alpha1-6) (GIPC C), and Manp(alpha1-2)Manp(alpha1-6)Manp(alpha1-6) (GIPC D) substituents linked to the nonreducing terminal mannose residue found in the WT GIPC A were abundant. The ceramide moieties of C. neoformans GIPCs were composed of a C(18) phytosphingosine long-chain base mainly N-acylated with 2-hydroxy-tetracosanoic acid in the WT GIPC while in the acapsular Cap67 mutant GIPCs, as well as 2-hydroxy-tetracosanoic acid, the unusual 2,3-dihydroxy-tetracosanoic acid was characterized. In addition, structural analysis revealed that the amount of GIPC in the WT cells was fourfold less of that in the acapsular mutant. 相似文献
10.
Melissa Strassberg Katherine Peters Mary Marazita Jennifer Ganger Margaret Watt-Morse Lenn Murrelle Ralph Tarter Michael Vanyukov 《Twin research》2002,5(5):499-501
This paper describes the Pittsburgh Registry of Infant Multiplets (PRIM; Pittsburgh, Pennsylvania), the results of pilot research conducted in this registry, and the plans for future studies. The main focus of the registry is on psychological development and the risk for behavioral disorders. Particularly, characteristics associated with antisociality and the risk for substance use disorders (e.g., aggressivity, hyperactivity/impulsivity), as well as language development and other traits (e.g., dental health) are among the research targets. 相似文献