首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   1篇
  2021年   1篇
  2020年   3篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
2.
Summary Endosperm protein components from common bread wheats (Triticum aestivum L.) and related species were extracted with aluminum lactate, pH 3.2, and examined by electrophoresis in the same buffer. Electrophoretic patterns of the albumins and globulins were compared to evaluate the possibility that a particular species might have contributed its genome to tetraploid or hexaploid wheat. Together with protein component mobilities, differential band staining with Coomassie Brilliant Blue R250 was employed to test the identity or non-identity of bands. Eight species and 63 accessions, representative of Triticum and Aegilops were tested. Considerable intraspecific variation was observed for patterns of diploid but not for tetraploid or hexaploid species. Patterns of some accessions of Triticum urartu agreed closely with major parts of the patterns of Triticum dicoccoides and T. aestivum. A fast-moving, green band was found in all accessions of T. urartu and of Triticum boeoticum, however, that was not found in those of T. dicoccoides or T. aestivum. This band was present in all accessions of Triticum araraticum and Triticum zhukovskyi. Patterns of Aegilops longissima, which has been suggested as the donor of the B genome, differed substantially from those of T. dicoccoides and T. aestivum. Finally, two marker proteins of intermediate mobility were also observed and may be used to discriminate between accessions of T. araraticum/T. zhukovskyi and those of T. dicoccoides/T. aestivum.  相似文献   
3.
Three C hordein fractions were prepared by ion-exchange chromatography of a total hordein preparation on carboxymethyl cellulose at pH 4.6 Polyacrylamide gel electrophoresis at pH 3.2 and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) at pH 8.9 showed that each fraction contained a single major band. The apparent molecular weights of these were determined by SDS-PAGE as 58, 57, and 54,000. When compared by isoelectric focusing, however, the 58 and 57,000 components each separated into two major bands and the 54,000 component into four. Amino acid analysis showed that although the three fractions had similar compositions with high glutamate+glutamine (38–39%), proline (30–32%) and phenylalanine (8–9%) contents, some differences were present, notably in the relative content of lysine. The three fractions had identical amino acid sequences for the first ten residues at the N-terminal end. They also had identical sequences for the first five residues at the C-terminal end, with the exception that a mixture of two amino acids were released from position 4 of the 58,000 fraction only. Peptide mapping with three enzymes (trypsin, chymotrypsin and V8 protease) indicated that the 58 and 57,000 fractions were more closely related to each other than to the 54,000 fraction. It is suggested that the 57 and 58,000 fractions and the 54,000 fraction constitute two families of closely related polypeptides which are coded by genes derived from the duplication and divergence of a single ancestral gene.  相似文献   
4.
Accumulating evidence has revealed that livin gene and BCL-2 modifying factor (BMF) gene are closely associated with the initiation and progression of colon carcinoma by activating or suppressing multiple malignant processes. Those genes that can detect colon - cancer are a promising approach for cancer screening and diagnosis. This study aimed to evaluate correlation between livin, BMF and p53 genes expression in colon cancer tissues of patients included in the study, and their relationship with clinicopathological features and survival outcome in those patients. In this study, 50 pathologically diagnosed early cancer colon patients included and their tissue biopsy with 50 matched adjacent normal tissue, and 50 adenoma tissue specimens were analyzed for livin gene and BMF gene expressions using real time PCR. The relationship of those genes expressions with clinicopathological features, tumor markers, Time to Progression and overall survival for those patients were correlated in cancer colon group. In this study, there was a significant a reciprocal relationship between over expression of livin gene and down regulation of BMF and p53 genes in colon cancer cells. Livin mRNA was significantly higher, while BMF and p53 mRNA were significantly lower in colorectal cancer tissue compared to benign and normal colon tissue specimens (P < 0.001), however, this finding was absent between colon adenomas and normal mucosa. There was a significant association between up regulation of livin and down regulation of BMF and p53 expressions with more aggressive tumor (advanced TNM stage), rapid progression with metastasis and decreased overall survival in cancer colon patients, hence these genes can serve as significant prognostic markers of poor outcome in colon cancer patients. This work highlights the role of livin, BMF and p53 genes in colorectal tumorigenesis and the applicability of using those genes as a diagnostic and prognostic markers in patients with colon carcinoma and as a good target for cancer colon treatment in the future.  相似文献   
5.
Essential oils of fennel, peppermint, caraway, eucalyptus, geranium and lemon were tested for their antimicrobial activities against some plant pathogenic micro-organisms (Fusarium oxysporum, Alternaria alternate, Penicilium italicum Penicilium digitatum and Botyritus cinerea). Essential oils of fennel, peppermint, caraway were selected as an active ingredient for the formulation of biocides due to their efficiency in controlling the tested micro-organisms. Successful emulsifiable concentrates (biocides) were prepared from these oils using different emulsifiers (Emulgator B.L.M. Tween20 and Tween80) and different fixed oils (sesame, olive, cotton and soybean oils). Physico-chemical properties of the formulated biocide (spontaneous emulsification, emulsion stability test, cold stability and heat stability tests as well as viscosity, surface tension and pH) were measured. The prepared biocides were ready to be tested for application in a future work as a safe pesticide against different pathogens.  相似文献   
6.
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.  相似文献   
7.
The -gliadins encoded on chromosome 1 of the A genome were purified from Triticum aestivum L. (2n=6x=42, AABBDD) cv. Butte86, nullisomic 1D-tetrasomic 1A of cv. Chinese Spring (CS N1DT1A), and the diploid T. urartu (2n=2x=14, AA). Reverse-phase high-performance liquid chromatography combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis of gliadin extracts from CS nullisomic-tetrasomic (NT) lines confirmed the assignment to chromosome 1A. The purified -gliadins were characterized by mass spectrometry and N-terminal sequencing. The 1A-encoded -gliadins were smaller than 1B- or 1D-encoded -gliadins. The N-terminal amino acid sequences for 1A -gliadin mature peptides were nearly identical to those for the T. urartu -gliadins and were more similar to 1D -gliadin sequences than to sequences for T. monococum -gliadins, barley C-hordeins, or rye -secalins. They diverged greatly from the N-terminal sequences for the 1B -gliadins. The data suggest that T. urartu is the A-genome donor, and that post-translational cleavage by an asparaginyl endoprotease produces those -gliadins with N-terminal sequences beginning with KEL.Communicated by J. Dvorak  相似文献   
8.
Vibrational Raman optical activity (ROA) spectra of the wheat proteins alpha-gliadin (A-gliadin), omega-gliadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data show that, under the conditions investigated, A-gliadin contains a considerable amount of hydrated alpha-helix, most of which probably lies within a relatively structured C-terminal domain. Smaller quantities of beta-structure and poly(l-proline) II (PPII) helix were also identified. Addition of methanol was found to increase the alpha-helix content at the expense of some of the beta and PPII structure. In comparison, omega-gliadin and the T-A-1 peptide were found to consist of large amounts of well-defined PPII structure with some turns but no alpha-helix. The results for the T-A-1 peptide are in agreement with a model in which HMW-GS are extended but not highly rigid. Application of a pattern recognition technique, based on principal component analysis (PCA), to the ROA spectra reinforces these conclusions.  相似文献   
9.
Low-molecular-weight glutenin subunits are classically divided into the B, C and D groups. Most attention has been paid to the characterisation of the B and D groups, whereas C subunits, although represented by a large number of protein components, have not been thoroughly characterised, mainly because they tend to separate with the gliadins in many fractionation procedures. Here we describe a procedure for obtaining a fraction strongly enriched in C subunits that has allowed us to determine the chromosomal location of these subunits in the bread wheat cultivar Chinese Spring. This analysis has shown that these subunits are coded on chromosome groups 1 and 6. Comparison between N-terminal amino acid sequencing of B and C subunits has shown that, whereas the former group includes mainly subunits with typical LMW-GS type sequences (76%), the C subunit group is made up almost completely of subunits with gliadin-like sequences (95%), including the alpha-type. These results indicate that the LMW-GSs are likely to be coded not only by the typical Glu-3 loci, but also by loci tightly linked to, and possibly included within, the Gli-1 and Gli-2 loci.  相似文献   
10.
The high-molecular-weight glutenin subunits (HMW-GS) of wheat gluten in their native form are incorporated into an intermolecularly disulfide-linked, polymeric system that gives rise to the elasticity of wheat flour doughs. These protein subunits range in molecular weight from about 70 K-90 K and are made up of small N-terminal and C-terminal domains and a large central domain that consists of repeating sequences rich in glutamine, proline, and glycine. The cysteines involved in forming intra- and intermolecular disulfide bonds are found in, or close to, the N- and C-terminal domains. A model has been proposed in which the repeating sequence domain of the HMW-GS forms a rod-like beta-spiral with length near 50 nm and diameter near 2 nm. We have sought to examine this model by using noncontact atomic force microscopy (NCAFM) to image a hybrid HMW-GS in which the N-terminal domain of subunit Dy10 has replaced the N-terminal domain of subunit Dx5. This hybrid subunit, coded by a transgene overexpressed in transgenic wheat, has the unusual characteristic of forming, in vivo, not only polymeric forms, but also a monomer in which a single disulfide bond links the C-terminal domain to the N-terminal domain, replacing the two intermolecular disulfide bonds normally formed by the corresponding cysteine side chains. No such monomeric subunits have been observed in normal wheat lines, only polymeric forms. NCAFM of the native, unreduced 93 K monomer showed fibrils of varying lengths but a length of about 110 nm was particularly noticeable whereas the reduced form showed rod-like structures with a length of about 300 nm or greater. The 110 nm fibrils may represent the length of the disulfide-linked monomer, in which case they would not be in accord with the beta-spiral model, but would favor a more extended conformation for the polypeptide chain, possibly polyproline II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号