首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   13篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   15篇
  2013年   13篇
  2012年   6篇
  2011年   16篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
2.
3.
Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.  相似文献   
4.
Srinivasan R  Li J  Ng SL  Kalesh KA  Yao SQ 《Nature protocols》2007,2(11):2655-2664
This protocol describes the step-by-step procedures for the efficient assembly of bidentate inhibitor libraries of a target enzyme, using the so-called 'click chemistry' between an alkyne-bearing core group and an azide-modified peripheral group, followed by direct biological screening for the identification of potential 'hits'. The reaction is highlighted by its modularity, high efficiency (approximately 100% yield in most cases) and tolerance toward many functional groups present in the fragments, as well as biocompatibility (typically carried out in aqueous conditions with small amounts of biocompatible catalysts). The approach consists of three steps: (i) chemical synthesis of alkyne-bearing protein tyrosine phosphatase or matrix metalloprotease core groups and diverse azide-modified peripheral groups; (ii) click chemistry to assemble the bidentate inhibitor libraries; and (iii) direct screening of the libraries with target enzymes using 384-well microplate assays. Following the chemical synthesis of the core and peripheral groups and optimization of the click chemistry conditions (approximately 1 week), steps (ii) and (iii) take 3 d to complete (approximately 1-2 d for library assembly and 1 d for inhibitor screening).  相似文献   
5.
An interesting series of metal complexes of thiabendazole (tbz) is synthesized and characterized by elemental analyses and spectroscopic studies. The crystal structure of the hydrogen bonded one dimensional Co(II) complex, namely [Co(tbz)(2)(NO(3))(H(2)O)](NO(3)) is solved by single crystal X-ray diffraction. The complex crystallizes in monoclinic space group P2(1)/a with unit cell parameters, a=14.366(2), b=11.459(4), c=15.942(3) A, beta=113.78(3) degrees and z=4. The unit cell packing reveals an extensive hydrogen bonding involving a water molecule, nitrate ligands and the protonated nitrogen atoms of the tbz ligands, resulting in a one dimensional hydrogen bonding pattern. The antimicrobial activity of the complexes against selected bacteria (Escherichia coli and Bacillus subtilis) and yeast (Aspergillus flavues) is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined, and a good correlation between two factors is found. Photodynamic quantum yields of singlet oxygen production (RNO bleaching assay) and rate of superoxide generation (SOD inhibitable ferricytochrome c reduction assay and EPR spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap) by the metal complexes have been studied.  相似文献   
6.
Genetic antagonism and hypermutability in Mycobacterium smegmatis   总被引:4,自引:0,他引:4       下载免费PDF全文
Multidrug-resistant strains of Mycobacterium tuberculosis are a serious and continuing human health problem. Such strains may contain as many as four or five different mutations, and M. tuberculosis strains that are resistant to both streptomycin and rifampin contain mutations in the rpsL and rpoB genes, respectively. Coexisting mutations of this kind in Escherichia coli have been shown to interact negatively (S. L. Chakrabarti and L. Gorini, Proc. Natl. Acad. Sci. USA 72:2084-2087, 1975; S. L. Chakrabarti and L. Gorini, Proc. Natl. Acad. Sci. USA 74:1157-1161, 1977). We investigated this possibility in Mycobacterium smegmatis by analyzing the frequency and nature of spontaneous mutants that are resistant to either streptomycin or rifampin or to both antibiotics. Mutants resistant to streptomycin were isolated from characterized rifampin-resistant mutants of M. smegmatis under selection either for one or for both antibiotics. Similarly, mutants resistant to rifampin were isolated from streptomycin-resistant strains. The second antibiotic resistance mutation occurred at a lower frequency in both cases. Surprisingly, in both cases a very high rate of reversion of the initial antibiotic resistance allele was detected when single antibiotic selection was used; the majority of strains resistant to only one antibiotic were isolated by this process. Determinations of rates of mutation to antibiotic resistance in M. smegmatis showed that the frequencies were enhanced up to 10(4)-fold during stationary phase. If such behavior is also typical of slow-growing pathogenic mycobacteria, these studies suggest that the generation of multiply drug-resistant strains by successive mutations may be a more complex genetic phenomenon than suspected.  相似文献   
7.
The dodecapepetide sequence R-L-C-R-I-V-V-I-R-V-C-R with a disulfide bridge between the cysteine residues found in bovine neutrophils was synthesized by solid-phase procedures. Its antimicrobial activity against oral microorganisms such as Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans, and Streptococcus gordonii was examined, and its structural features were examined by CD and determined by two-dimensional (2D) nmr. The strains P. gingivalis (W50 and 381), A. actinomycetemcomitans (Y4 and 67), S. gordonii (DL1), and S. mutans (GS5) are found to be highly sensitive to this peptide at 2-2.5 microM concentrations, suggesting that the dodecapeptide is a potent antibiotic for oral pathogens. The weak negative n-sigma* band observed at approximately 265-270 nm in the CD spectra of this peptide provides evidence for the presence of a disulfide bridge. The negative n-pi* band at approximately 200 nm and the positive pi-pi* band at 185 nm suggest a folded structure for this peptide. The negative n-pi* shifts from 200 to 206 nm with an increase in intensity in dipalmitoylphosphotidylcholine vesicles, suggesting that the peptide might associate to form higher order aggregates in lipid medium. The assignment of backbone and side-chain proton resonances has been accomplished by the combined analysis of 2D total correlated and nuclear Overhauser effect spectroscopy. The temperature dependence of amide NH chemical shifts and (1)H-(2)H exchange effect on amide NH resonances indicate the involvement of amide NH groups of Cys3, Ile5, Ile8, Val10, and Arg12 in intramolecular hydrogen bonding. The coupling constant (J(NH-C(alpha)H)) values, the set of medium-, short-, and long-range nuclear Overhauser effects, and the results of restrained structure calculation using the distance geometry algorithm for nmr applications provide evidence for a folded, loop-like structure with a type I (III) beta-turn involving Ile5, Val6, Val7, and Ile8, and two antiparallel beta-strands involving the N-terminal Arg1, Leu2, Cys3, and Val4 and the C-terminal Arg9, Val10, Cys11, and Arg12 residues. The structure of the dodecapeptide mimics the amphiphilic structure of large 30-35 residue defensins and the peptide appears to exhibit similar antimicrobial potency.  相似文献   
8.
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.  相似文献   
9.
Control of host cell death is of paramount importance for the survival and replication of obligate intracellular bacteria. Among these, human pathogenic Chlamydia induces the inhibition of apoptosis in a variety of different host cells by directly interfering with cell death signaling. However, the evolutionary conservation of cell death regulation has not been investigated in the order Chlamydiales, which also includes Chlamydia-like organisms with a broader host spectrum. Here, we investigated the apoptotic response of human cells infected with the Chlamydia-like organism Simkania negevensis (Sn). Simkania infected cells exhibited strong resistance to apoptosis induced by intrinsic stress or by the activation of cell death receptors. Apoptotic signaling was blocked upstream of mitochondria since Bax translocation, Bax and Bak oligomerisation and cytochrome c release were absent in these cells. Infected cells turned on pro-survival pathways like cellular Inhibitor of Apoptosis Protein 2 (cIAP-2) and the Akt/PI3K pathway. Blocking any of these inhibitory pathways sensitized infected host cell towards apoptosis induction, demonstrating their role in infection-induced apoptosis resistance. Our data support the hypothesis of evolutionary conserved signaling pathways to apoptosis resistance as common denominators in the order Chlamydiales.  相似文献   
10.
BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac71-35 and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was overcome by elevating the calcium level. While bacA mutants elicited indeterminate nodule formation on peas, which belong to the galegoid tribe of legumes, bacteria lysed after release from infection threads and mature bacteroids were not formed. Microarray analysis revealed almost no change in a bacA mutant of R. leguminosarum bv. viciae in free-living culture. In contrast, 45 genes were more-than 3-fold upregulated in a bacA mutant isolated from pea nodules. Almost half of these genes code for cell membrane components, suggesting that BacA is crucial to alterations that occur in the cell envelope during bacteroid development. In stark contrast, bacA mutants of R. leguminosarum bv. phaseoli and R. etli elicited the formation of normal determinate nodules on their bean host, which belongs to the phaseoloid tribe of legumes. Bacteroids from these nodules were indistinguishable from the wild type in morphology and nitrogen fixation. Thus, while bacA mutants of bacteria that infect galegoid or phaseoloid legumes have similar phenotypes in free-living culture, BacA is essential only for bacteroid development in indeterminate galegoid nodules.Bacteria of the family Rhizobiaceae are alphaproteobacteria, which form a species-specific symbiotic relationship with leguminous plants. Plants release flavonoids that typically induce the synthesis of lipochitooligosaccharides by rhizobia, which in turn initiate a signaling cascade in the plant, leading to nodule formation (34). Rhizobia become trapped by curling root hairs, which they enter via infection threads that grow and ramify into the root cortex, where newly induced meristematic cells form the nodule (34). Bacteria are released from infection threads and engulfed by a plant-derived symbiosome membrane. In galegoid legumes (a clade in the subfamily Papilionoideae, such as Medicago, Pisum, or Vicia), which form indeterminate nodules that have a persistent meristem, bacteria undergo the endoreduplication of their chromosome, resulting in dramatic increases in size, shape, and DNA content to become terminally differentiated bacteroids (32). However, in phaseoloid legumes (e.g., lotus, bean, and soybean), which form determinate nodules with a transient meristem, bacteria do not undergo endoreduplication and therefore do not enlarge substantially. These bacteroids retain a normal DNA content and can regrow after isolation from nodules (32). The endoreduplication of bacteroids is controlled by the plant, and it is believed that nodule-specific cysteine-rich (NCR) peptides, which are made in indeterminate, but not in determinate, nodules, may be responsible for inducing and maintaining bacteroid development (31, 32). Finally, mature bacteroids receive dicarboxylic acids from the plant, which they use as a carbon, reductant, and energy source for the reduction of N2 to ammonia (38). The ammonia is secreted to the plant, where it is assimilated into amino acids or ureides, depending on the legume, for export to the shoot.Sinorhizobium meliloti BacA protein was the first bacterial factor identified to be essential for bacteroid development (15). More recently, it also has been shown to be essential for the Mesorhizobium-Astragalus symbiosis (42). S. meliloti elicits the formation of indeterminate nodules on alfalfa, and while S. meliloti bacA null mutants induce nodule formation, bacteria lyse soon after endocytosis but prior to bacteroid differentiation (15, 20). BacA is a cytoplasmic membrane protein that shares 64% identity with SbmA from Escherichia coli (15, 25). SbmA/BacA proteins belong to the ATP binding cassette (ABC) superfamily and share sequence similarity with a family of eukaryotic peroxisomal membrane proteins, including the human adrenoleukodystrophy protein, which is required for the efficient transport of very-long-chain fatty acids (VLCFAs) out of the cytoplasm (9). Consistent with this, S. meliloti BacA is required for the complete modification of lipid A with VLCFAs (9). However, since S. meliloti mutants, which are directly involved in the biosynthesis of VLCFA-modified lipid A, show bacteroid abnormalities but still can form a successful alfalfa symbiosis, the effect of BacA on lipid A VLCFA modification does not fully account for its essential role in bacteroid development (10, 11, 16). Strains mutated in bacA also have an increased resistance to the glycopeptide bleomycin, a low-level resistance to aminoglycoside antibiotics, and an increased sensitivity to ethanol, sodium dodecyl sulfate (SDS), and deoxycholate relative to the sensitivities of the parent strain (12, 18, 25). More recently it has been shown that an S. meliloti bacA null mutant has an increased resistance to a truncated form of a eukaryotic proline-rich peptide, Bac71-16, and was unable to accumulate a fluorescently labeled form of this peptide (28). This finding, combined with the increased resistance of an S. meliloti bacA null mutant to bleomycin, led to the hypothesis that BacA is itself a putative peptide transporter (BacA mediated) or able to alter the activity of such a transporter (BacA influenced) (11, 15, 18, 28).As the increased resistance of the S. meliloti bacA null mutant to bleomycin and Bac71-16 appears to be independent of the VLCFA modification of lipid A (11, 28), this suggested that either BacA-mediated or BacA-influenced peptide uptake into S. meliloti plays a role in bacteroid development. Since indeterminate galegoid nodules contain hundreds of NCR peptides, whereas determinate phaseoloid nodules lack these host peptides (31), we considered it important to assess the role of BacA in bacteroid development during the formation of both nodule types.Here, we show that bacA mutants of Rhizobium leguminosarum bv. viciae strains 3841 and A34 failed to develop bacteroids and did not fix nitrogen in indeterminate pea (Pisum sativum) nodules. However, bacA mutants of both R. leguminosarum bv. phaseoli 4292 and Rhizobium etli CE3 formed normal bacteroids and fixed nitrogen at wild-type rates in determinate bean (Phaseolus vulgaris) nodules. This is consistent with BacA being a key component of bacteroid development in indeterminate galegoid nodules that is not required for functional bacteroid formation in determinate phaseoloid nodules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号