首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  32篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1964年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Abstract— We have measured serotonin (5-HT) within large and small neurosomata which are vitally stained by Neutral Red dye. A micro-radioenzymatic technique which is sensitive to 50fmol of 5-HT was employed on intact ganglia, 75 μm Retzius Cells (RZ) and a 10 μm ventro-lateral cell (VL) taken from the leech Macrobdella decora. The stain does not affect the levels of 5-HT in either ganglia or RZ. The VL cell body contains 5-HT at concentrations of at least 100 m m . Microspectrofluorometry of all the ganglionic neurosomata which fluoresce following the Falck-Hillarp formaldehyde condensation reaction detected rapidly-fading emission peaks of 509–523 nanometers. We conclude that all seven fluorescent neurons in the leech ganglion very probably contain serotonin.  相似文献   
2.
Summary The retinal projections in the tegu lizard were traced using degeneration-silver methods. Bilateral projections were found to the dorsolateral geniculate and the posterodorsal nuclei. Unilateral, crossed projections were traced to the suprachiasmatic nucleus, the ventrolateral geniculate nucleus, the mesencephalic lentiform nucleus, nucleus geniculatus praetectalis, the ectomammillary nucleus, and the optic tectum. Some of these connections are distinctly different from those reported in other reptiles and suggest that important interspecific variations occur among reptiles.  相似文献   
3.
Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral retinal projections to the lateral thalamus (GLd). We compared these visual traits in two visually active species of the genus Octodon that exhibit contrasting visual habits: the diurnal Octodon degus, and the nocturnal Octodon lunatus. The O. lunatus visual field has a prominent 100° frontal binocular overlap, much larger than the 50° of overlap found in O. degus. Cells in the retinal ganglion cell layer were 40% fewer in O. lunatus (180,000) than in O. degus (300,000). O. lunatus has a poorly developed visual streak, but a well developed area centralis, located centrally near the optic disk (peak density of 4,352 cells/mm2). O. degus has a highly developed visual streak, and an area centralis located more temporally (peak density of 6,384 cells/mm2). The volumes of the contralateral GLd and superior colliculus (SC) are 15% larger in O. degus compared to O. lunatus. However, the ipsilateral projections to GLd and SC are 500% larger in O. lunatus than in O. degus. Other retinorecipient structures related to ocular movements and circadian activity showed no statistical differences between species. Our findings strongly suggest that nocturnal visual behavior leads to an enhancement of the structures associated with binocular vision, at least in the case of these rodents. Expansion of the binocular visual field in nocturnal species may have a beneficial effect in light and contrast sensitivity, but not necessarily in stereopsis. We discuss whether these conclusions can be extended to other mammalian and non-mammalian amniotes.  相似文献   
4.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 -/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 -/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 -/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.  相似文献   
5.
We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of further staining.  相似文献   
6.
Niemann-Pick type C (NPC) disease is a fatal, neurodegenerative disorder caused in 95% of cases by loss of function of NPC1, a ubiquitous endosomal transmembrane protein. A biochemical hallmark of NPC deficiency is cholesterol accumulation in the endocytic pathway. Although cholesterol trafficking defects are observed in all cell types, neurons are the most vulnerable to NPC1 deficiency, suggesting a specialized function for NPC1 in neurons. We investigated the subcellular localization of NPC1 in neurons to gain insight into the mechanism of action of NPC1 in neuronal metabolism. We show that NPC1 is abundant in axons of sympathetic neurons and is present in recycling endosomes in presynaptic nerve terminals. NPC1 deficiency causes morphological and biochemical changes in the presynaptic nerve terminal. Synaptic vesicles from Npc1(-/-) mice have normal cholesterol content but altered protein composition. We propose that NPC1 plays a previously unrecognized role in the presynaptic nerve terminal and that NPC1 deficiency at this site might contribute to the progressive neurological impairment in NPC disease.  相似文献   
7.
Niemann-Pick type-C (NPC) disease is characterized by a progressive loss of neurons and an accumulation of unesterified cholesterol within the endocytic pathway. Unlike other tissues, however, NPC1-deficient brains do not accumulate cholesterol but whether or not NPC1-deficient neurons accumulate cholesterol is not clear. Therefore, as most studies on cholesterol homeostasis in NPC1-deficient cells have been performed in fibroblasts we have investigated cholesterol homeostasis in cultured murine sympathetic neurons lacking functional NPC1. These neurons did not display obvious abnormalities in growth or morphology and appeared to respond normally to nerve growth factor. Filipin staining revealed numerous cholesterol-filled endosomes/lysosomes in NPC1-deficient neurons and the mass of cholesterol in cell bodies was greater than in wild-type neurons. Surprisingly, however, the cholesterol content of NPC1-deficient and wild-type neurons as a whole was the same. This apparent paradox was resolved when the cholesterol content of NPC1-deficient distal axons was found to be less than of wild-type axons. Cholesterol sequestration in cell bodies did not depend on exogenously supplied cholesterol since the cholesterol accumulated before birth and did not disperse when neurons were cultured without exogenous cholesterol. The altered cholesterol distribution between cell bodies and axons suggests that transport of cholesterol, particularly that synthesized endogenously, from cell bodies to distal axons is impaired in NPC1-deficient neurons.  相似文献   
8.
9.
Cholesterol is highly enriched in the brain compared to other tissues. Essentially all cholesterol in the brain is synthesized endogenously since plasma lipoproteins are unable to cross the blood-brain barrier. Cholesterol is transported within the central nervous system in the form of apolipoprotein E-containing lipoprotein particles that are secreted mainly by glial cells. Cholesterol is excreted from the brain in the form of 24-hydroxycholesterol. Apolipoprotein E and cholesterol have been implicated in the formation of amyloid plaques in Alzheimer's disease. In addition, the progressive neurodegenerative disorder Niemann-Pick C disease is characterized by defects in intracellular trafficking of cholesterol.  相似文献   
10.
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号