首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2021年   1篇
  2019年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有19条查询结果,搜索用时 93 毫秒
1.
To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms.  相似文献   
2.
The role of pollen odour in resource location by the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a pollen-feeding insect regarded as a pest of oilseed rape, Brassica napus L., (Brassicaceae) crops, was investigated in a linear track olfactometer. Both male and female beetles were attracted to the odour of whole oilseed rape flowers, indicating that these insects can locate their host plants using floral odours as cues. The attractive odour of flowers was found to emanate from all floral parts tested: the petals/sepals, the anthers, and from pollen itself. Therefore, at least part of the attractive odour of oilseed rape flowers emanates from pollen. Beetles were more attracted to floral samples containing anthers than those without anthers when these odours were directly compared in a choice-test, and this indicates that there were detectable differences between them. Anthers and pollen may therefore release distinctive odours that are quantitatively and/or qualitatively different from the odour of the rest of the flower. These experiments support the hypothesis that pollen-seeking insects use pollen odour cues to locate this food source.  相似文献   
3.
Interactions between yeast Dnm1p, Mdv1p, and Fis1p are required to form fission complexes that catalyze division of the mitochondrial compartment. During the formation of mitochondrial fission complexes, the Dnm1p GTPase self-assembles into large multimeric complexes on the outer mitochondrial membrane that are visualized as punctate structures by fluorescent labeling. Although it is clear that Fis1p.Mdv1p complexes on mitochondria are required for the initial recruitment of Dnm1p, it is not clear whether Dnm1p puncta assemble before or after this recruitment step. Here we show that the minimum oligomeric form of cytoplasmic Dnm1p is a dimer. The middle domain mutant protein Dnm1G385Dp forms dimers in vivo but fails to assemble into punctate structures. However, this dimeric mutant stably interacts with Mdv1p on the outer mitochondrial membrane, demonstrating that assembly of stable Dnm1p multimers is not required for Dnm1p-Mdv1p association or for mitochondrial recruitment of Dnm1p. Dnm1G385Dp is reported to be a terminal dimer in vitro. We describe conditions that allow assembly of Dnm1G385Dp into functional fission complexes on mitochondria in vivo. Using these conditions, we demonstrate that multimerization of Dnm1p is required to promote reorganization of Mdv1p from a uniform mitochondrial localization into punctate fission complexes. Our studies also reveal that Fis1p is present in these assembled fission complexes. Based on our results, we propose that Dnm1p dimers are initially recruited to the membrane via interaction with Mdv1p.Fis1p complexes. These dimers then assemble into multimers that subsequently promote the reorganization of Mdv1p into punctate fission complexes.  相似文献   
4.
A detailed investigation of the wood, leaf, branch and root oil of Eremophila mitchellii (Benth.) was carried out by a combination of GC-FID, GC-MS and NMR. The wood oil was composed predominantly of eremophilanes, a rare class of biologically active, bicyclic sesquiterpenoids. The root oil was also found to contain the eremophilanes together with the zizaene sesquiterpene, sesquithuriferone. 9-Hydroxy-1,7(11),9-eremophilatrien-8-one and the known 1(10),11-eremophiladien-9-one (eremophilone), 9-hydroxy-7(11),9-eremophiladien-8-one (2-hydroxyeremophilone), 8-hydroxy-11-eremophilen-9-one (santalcamphor), 8-hydroxy-10,11-eremophiladien-9-one, sesquithuriferone and 8-hydroxy-1,11-eremophiladien-9-one were purified and elucidated by NMR. Three approaches to the purification of the major eremophilanes from the wood oil are described. (+) Spathulenol, α-pinene, globulol, viridiflorene were the major constituents of the leaf oil. All of the essential oils and the eremophilanes exhibited cytotoxicity against P388D(1) mouse lymphoblast cells in-vitro.  相似文献   
5.
The atropisomeric austrocolorins A(1) (7) and B(1) (8), new members of the rare tricolorin class of 10,10'-coupled dihydroanthracenones, are isolated from an indigenous Australian toadstool belonging to the subgenus Dermocybe of Cortinarius, and their structure and absolute central and axial configuration is deduced from the spectroscopic data, and confirmed by chemical degradation and chiral HPLC analysis.  相似文献   
6.
Highlights? Lgr5+ cells regenerate mammary epithelium more effectively than other basal cells ? Single Lgr5+ cells are exceptionally efficient in reconstituting mammary glands ? Depletion of Lgr5+ cells leads to impaired mammary gland pubertal development ? Lgr5+ cells are sufficient and necessary for postnatal mammary gland organogenesis  相似文献   
7.
8.
In this study, ethyl acetate and aqueous fractions from 117 collections of Australian macrofungi belonging to the mushroom genus Cortinarius were screened for antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Overall, the lipophilic fractions were more active than the aqueous fractions. The ethyl acetate fractions of most or all collections of 13 species, namely Cortinarius ardesiacus, C. archeri, C. austrosaginus, C. austrovenetus, C. austroviolaceus, C. coelopus, C. [Dermocybe canaria]2, C. clelandii, C. [D. kula], C. memoria-annae, C. persplendidus, C. sinapicolor, C. vinosipes and forty seven collections of un-described Cortinarius species exhibited IC50 values of ?0.09 mg/mL against S. aureus. In contrast, most or all collections of only four species, namely C. abnormis, C. austroalbidus, C. [D. kula], C. persplendidus, and eleven un-described Cortinarius collections exhibited similar effects against P. aeruginosa (IC50 ? 0.09 mg/mL). Anthraquinonoid pigments isolated from C. basirubescens together with emodin physcion and erythrogluacin were assessed for their antimicrobial activity. The fungal octaketides austrocortilutein, austrocortirubin, torosachrysone, physcion and emodin were found to strongly inhibit the growth of S. aureus (IC50 0.7–12 μg/mL) whereas only physcion and emodin exhibited potency against P. aeruginosa (IC50 1.5 and 2.0 μg/mL, respectively).  相似文献   
9.
To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3‐GFP, pOBCol3.6‐GFP, and DMP1‐GFP), similar to the endogenous proteins, are also expressed by bone‐forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP‐Cerulean/DMP1‐Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24‐258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1‐Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP‐Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.  相似文献   
10.
The outer mitochondrial membrane protein Ugo1 forms a complex with the Fzo1p and Mgm1p GTPases that regulates mitochondrial fusion in yeast. Ugo1p contains two putative carrier domains (PCDs) found in mitochondrial carrier proteins (MCPs). Mitochondrial carrier proteins are multipass transmembrane proteins that actively transport molecules across the inner mitochondrial membrane. Mitochondrial carrier protein transport requires functional carrier domains with the consensus sequence PX(D/E)XX(K/R). Mutation of charged residues in this consensus sequence disrupts transport function. In this study, we used targeted mutagenesis to show that charge reversal mutations in Ugo1p PCD2, but not PCD1, disrupt mitochondrial fusion. Ugo1p is reported to be a single-pass transmembrane protein despite the fact that it contains several additional predicted transmembrane segments. Using a combination of protein targeting and membrane extraction experiments, we provide evidence that Ugo1p contains additional transmembrane domains and is likely a multipass transmembrane protein. These studies identify PCD2 as a functional domain of Ugo1p and provide the first experimental evidence for a multipass topology of this essential fusion component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号