首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2021年   2篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1966年   1篇
  1888年   1篇
  1887年   1篇
  1883年   1篇
  1881年   1篇
  1879年   1篇
  1871年   3篇
  1867年   1篇
排序方式: 共有45条查询结果,搜索用时 140 毫秒
1.
The objective of this study was to purify and characterize a mouse hepatic enzyme that directly generates CH3SeH from seleno-l-methionine (l-SeMet) by the α,γ-elimination reaction. The l-SeMet α,γ-elimination enzyme was ubiquitous in tissues from ICR mice and the activity was relatively high in the large intestine, brain, and muscle, as well as the liver. Aging and sex of the mice did not have any significant influence on the activity in the liver. The enzyme was purified from the mouse liver by ammonium sulfate precipitation and four kinds of column chromatography. These procedures yielded a homogeneous enzyme, which was purified approx 1000-fold relative to mouse liver extract. Overall recovery was approx 8%. The purified enzyme had a molecular mass of approx 160 kDa with four identical subunits. The K m value of the enzyme for the catalysis of l-SeMet was 15.5 m M, and the V max was 0.29 units/mg protein. Pyridoxal 5′-phosphate (pyridoxal-P) was required as a cofactor because the holoenzyme could be resolved to the apoenzyme by incubation with hydroxylamine and reconstituted by addition of pyridoxal-P. The enzyme showed the optimum activity at around pH 8.0 and the highest activity at 50°C; it catalyzed the α,γ-elimination reactions of several analogs such as d,l-homocysteine and l-homoserine in addition to l-SeMet. This enzyme also catalyzed the α,β-elimination reaction of Se-methylseleno-l-cysteine. However, l-methionine was inerts. Therefore, the purified enzyme was different from the bacterial l-methionine γ-lyase that metabolizes l-SeMet to CH3SeH, in terms of the substrate specificity. These results were the first identification of a mammalian enzyme that specifically catalyzes the α,γ-elimination reaction of l-SeMet and immediately converts it to CH3SeH, an important metabolite of Se.  相似文献   
2.
The effects of Ca2+ in the external medium on intact mung beanroots under high NaCl stress were investigated. With increasingexternal concentrations of NaCl, mung bean roots showed suppressionof elongation and a decrease in the intracellular concentrationof K+. Addition of Ca2+ to the external medium alleviated theinhibition of root elongation under the high NaCl stress andmaintained a high intracellular concentration of K+ in the elongatingregion of the roots. This counter effect of Ca2+ against theNaCl stress on roots was correlated with the ratio of [Ca2+]/[Na+]2in the external medium. A value above 5.0 ? 10–4 mM–1resulted in almost complete recovery of root elongation undervarious high concentrations of NaCl. Root elongation for 24h under NaCl stress was correlated with the extent to whichthe intracellular concentration of K+ was in excess of 10 mM.Maintenance of an adequate concentration of K+ in root cellsis essential for root elongation under salt stress. These findingsindicate that Ca2+ prevents the leakage of intracellular K+and thereby supports the elongation of roots under salt stress. (Received November 13, 1989; Accepted June 5, 1990)  相似文献   
3.
4.
Correspondenz     
Ohne Zusammenfassung  相似文献   
5.
6.
Witkin 1980-1988, 42 patients (4 males and 38 females) were operated for the gall-bladder cancer; it makes 2.9% of the patients who underwent cholecystectomies. Average age of female patients was 65 and males--71 years. No typical complaints were revealed making possible an early diagnosing of the gall-bladder cancer. The far advanced stages of this cancer were found in 41 cases. In i case no macroscopic features of the cancer were found. Cancer was diagnosed by means of histopathological examination. One patient (woman) survived more than 3 years after operation; 3 women survived more than 1 year. Average survival is 4 months.  相似文献   
7.
Although selenium is thought to be essential for various immune responses, the excess supplementation may have an adverse effect on certain immunological functions. The present study was designed to determine the effective chemical forms of selenium and their optimal levels on T-cell mitogenesis with splenic cells from mice given a selenium-deficient diet for 8 weeks to avoid effects of cellular selenium sources. Although selenium in tissues, except for spleen and thymus, was almost depleted by feeding selenium-deficient diet, the lymphoid organs still contained low levels of selenium. Both activities of cellular glutathione peroxidase (cGPx) and thioredoxin reductase (TR) in liver and splenic cells showed a tendency to decrease by selenium deficiency. However, splenic cells were tolerant against decrease of the selenoenzyme activities, and TR was also more tolerant than cGPx. T-cell proliferation of the selenium-insufficient splenic cells induced by concanavalin A was increased by addition of Na2SeO3, Na2SeO4, Na2Se, seleno-dl-cystine, seleno-l-methionine and selenocystamine. Their promoting action was observed at levels lower than 0.1 μmol/L and was completely suppressed at the highest concentration (1 μmol/L), except for selenocystamine. Na2SeO3 was one of the efficient selenocompounds for the mitogenesis, which was concomitant with the significant induction of cGPx and TR. However, recovery of cGPx activity in the selenium-insufficient cells by supplementary Na2SeO3 was only partial, while TR activity was readily recovered from selenium deficiency. These results therefore indicate that only low levels of selenium is essential for T-cell mitogenesis even in selenium-insufficient splenic cells, and TR, which is readily recovered by Na2SeO3, may be the critical enzyme.  相似文献   
8.
9.
The objective of this study was to purify and characterize a mouse hepatic enzyme that directly generates CH3SeH from seleno-l-methionine (l-SeMet) by the alpha,gamma-elimination reaction. The l-SeMet alpha,gamma-elimination enzyme was ubiquitous in tissues from ICR mice and the activity was relatively high in the large intestine, brain, and muscle, as well as the liver. Aging and sex of the mice did not have any significant influence on the activity in the liver. The enzyme was purified from the mouse liver by ammonium sulfate precipitation and four kinds of column chromatography. These procedures yielded a homogeneous enzyme, which was purified approx 1000-fold relative to mouse liver extract. Overall recovery was approx 8%. The purified enzyme had a molecular mass of approx 160 kDa with four identical subunits. The Km value of the enzyme for the catalysis of l-SeMet was 15.5 mM, and the Vmax was 0.29 units/mg protein. Pyridoxal 5'-phosphate (pyridoxal-P) was required as a cofactor because the holoenzyme could be resolved to the apoenzyme by incubation with hydroxylamine and reconstituted by addition of pyridoxal-P. The enzyme showed the optimum activity at around pH 8.0 and the highest activity at 50 degrees C; it catalyzed the alpha,gamma-elimination reactions of several analogs such as d,l-homocysteine and l-homoserine in addition to l-SeMet. This enzyme also catalyzed the alpha,beta-elimination reaction of Se-methylseleno-l-cysteine. However, l-methionine was inert. Therefore, the purified enzyme was different from the bacterial l-methionine gamma-lyase that metabolizes l-SeMet to CH3SeH, in terms of the substrate specificity. These results were the first identification of a mammalian enzyme that specifically catalyzes the alpha,gamma-elimination reaction of l-SeMet and immediately converts it to CH3SeH, an important metabolite of Se.  相似文献   
10.
Cyclooxygenase 2 and release of prostaglandin E2 are involved in many responses including inflammation and are upregulated during cellular senescence. However, little is known about the role of lipid inflammatory mediators in senescence. Here, we investigated the mechanism by which the COX-2/PGE2 axis induces senescence. Using the NS398 specific inhibitor of COX-2, we provide evidence that reactive oxygen species by-produced by the COX-2 enzymatic activity are negligible in front of the total senescence-associated oxidative stress. We therefore investigated the role of PGE2 by invalidating the PGE2 synthases downstream of COX-2, or the specific PGE2 receptors, or by applying PGE2 or specific agonists or antagonists. We evaluated the effect on senescence by evaluating the senescence-associated proliferation arrest, the percentage of senescence-associated β-galactosidase-positive cells, and the expression of senescent molecular markers such as IL-6 and MCP1. We show that PGE2 acting on its EP specific receptors is able to induce both the onset of senescence and the maintenance of the phenotype. It did so only when the PGE2/lactate transporter activity was enhanced, indicating that PGE2 acts on senescence more via the pool of intracellular EP receptors than via those localized at the cell surface. Treatment with agonists, antagonists and silencing of the EP receptors by siRNA revealed that EP3 was the most involved in transducing the intracrine effects of PGE2. Immunofluorescence experiments confirmed that EP3 was more localized in the cytoplasm than at the cell surface. Taken together, these results suggest that COX-2 contributes to the establishment and maintenance of senescence of normal human fibroblasts via an independent-ROS and a dependent-PGE2/EPs intracrine pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号