首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2013年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death.  相似文献   
3.
Secondary agriculture plays a significant role in making a positive impact on the country’s economy. It has potential to increase the value of primary agriculture. It ensures better utilization of renewable agro-bioresources either through value addition or waste utilization. Nurseries, bio-fertilizers, bio-pesticides, compost, fruit-processed products, agro-tourism, weaving, flavours, and dyes are some of the avenues of secondary agriculture. By-products from agricultural crops like wheat and rice bran, corn gluten meal and germ, pulses meal and husk, and sugarcane bagasse, if processed appropriately for deriving industrial products could pave a way in getting better economic returns from agriculture rather using them as livestock feed. Among food crops, major post-harvest losses (30–40%) occurs in fruits and vegetables; their waste being rich in several bioactive compounds possess great potential to be added as a polyphenol rich and fibre source in food products or for the synthesis of food-grade industrial products like ethanol, citric acid and pectin etc. Wastes from floriculture industries can also be utilised for the production of several value-added products such as biofuels, bio-ethanol, compost, organic acids, pigments and dyes, incense sticks, handmade paper production, and sugar syrup. Around the world, 80% of population is dependent on traditional medicine for health care needs. The secondary metabolites from medicinal plants possess pharmaceutical properties and advancement in extraction techniques can lead to novel range of herbal products of high economic value. The market potential of agro-produce seems to be naïve but opportunistic in near future. The advancement in technologies, equipments, and processes would enable enhanced secondary agriculture practices giving range of materials of better quality, yield, nutrition, and convenience. Hence, the potential of secondary agriculture and bioprocessing could be strong boost to the economy, societal status and environmental protection. In this article we have made an effort to understand the secondary agriculture, its potential to uplift the economy and strategies for value addition in different agricultural domains such as horticulture, floriculture and medicinal plants.  相似文献   
4.
Intestinal parasitic pathogens in HIV/AIDS patients include Cryptosporidium sp, Cystoisospora sp, microsporidia and less commonly other parasites. The two most common microsporidia causing intestinal infection are Enterocytozoon bieneusi and Encephalitozoon intestinalis. Most of the Indian studies for intestinal parasitic infections in HIV/AIDS patients have not included microsporidia, due to difficult staining and identification of the parasite. The aim of the present study was to find the prevalence of intestinal microsporidiosis and their species identification along with correlation of CD4 count with parasite positivity and diarrhoea in HIV positive individuals. Stool samples of 363 individuals including 125 HIV seropositive patients with diarrhoea, 158 HIV seropositive patients without diarrhoea, 55 HIV seronegative patients with diarrhoea and 25 healthy controls were obtained from various out-patient departments and in-patients admitted to a tertiary care hospital from August 2008 to October 2009. The stool samples were subjected to examination by wet mount, modified acid fast stain for coccidian parasites and multiplex nested PCR for microsporidia. The overall prevalence of all intestinal parasites among HIV patients in our study was 26.5%. The prevalence of intestinal parasitic pathogens in HIV positive patients with diarrhoea was 43.2%. Microsporidia were the most common parasites detected (14%) in all patients, while in HIV infected patients 15.9% patients had microsporidia infection. The most common species causing intestinal microsporidiosis in our study was E. intestinalis (10.5%). In HIV seropositive individuals with diarrhoea, E. intestinalis was 20.8% and E. bieneusi 8.0% while in HIV-seropositive individuals without diarrhoea, E. intestinalis was 3.8% and E. bieneusi 1.9%. E. intestinalis was present in 10.9% of HIV negative individuals with diarrhoea in whom E. bieneusi was not found. There was a significant association between CD4 count ≤ 200/μl and intestinal parasite positivity. Thus, it can be concluded that intestinal microsporidiosis is under reported but an important disease in India. The predominant species in our study is E. intestinalis , in contrast to other parts of the world where E. bieneusi is more common.  相似文献   
5.
Fusarochromanone (FC101), a mycotoxin produced by the fungus Fusarium equiseti, is frequently observed in the contaminated grains and feedstuffs, which is toxic to animals and humans. However, the underlying molecular mechanism remains to be defined. In this study, we found that FC101 inhibited cell proliferation and induced cell death in COS7 and HEK293 cells in a concentration-dependent manner. Flow cytometric analysis showed that FC101 induced G1 cell cycle arrest and apoptosis in the cells. Concurrently, FC101 downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and Cdc25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in hypophosphorylation of Rb. FC101 also inhibited protein expression of Bcl-2, Bcl-xL, Mcl-1 and survivin, and induced expression of BAD, leading to activation of caspase 3 and cleavage of PARP, indicating caspase-dependent apoptosis. However, Z-VAD-FMK, a pan-caspase inhibitor, only partially prevented FC101-induced cell death, implying that FC101 may induce cell death through both caspase-dependent and -independent mechanisms. Our results support the notion that FC101 executes its toxicity at least by inhibiting cell proliferation and inducing cell death.  相似文献   
6.

With the advancement of biotechnological tools and techniques such as next generation sequencing, RNAomics, epigenomics, gene silencing, plant, microbe transformation, proteomics and metabolomics, the understanding of metabolic pathways and their manipulation for the desired characters became feasible. Metabolic engineering has been successful in the production of golden rice, bioprocess for artemisinin production, flavonoids in plant and microbes as well as generated biotic and abiotic stress tolerance in several crop plants. In view of the significance of metabolic engineering, this article includes recent techniques developed and their use in manipulation of glyoxalase metabolism for multiple abiotic stress tolerance in plants. The importance of engineering of flavonoids pathway for high value antioxidants production as well as improving the biotic and abiotic stress tolerance has been documented. Importance and success of metabolic engineering has been realized by its promising hope for sustainable technologies of bioactives production for mankind’s health as well as in the generation of improved crop varieties.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号