首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
  56篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2018年   3篇
  2016年   5篇
  2015年   8篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
To assess the role of antioxidant defense system on exposure to ultra-violet-B (UV-B) radiation, the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbic acid peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), as well as the level of antioxidants ascorbic acid (AA) and alpha-tocopherol were monitored in cucumber (Cucumis sativus L. var long green) cotyledons. UV-B enhanced the activity of antioxidant enzymes as well as AA content, but decreased the level of alpha-tocopherol. Significant increase was observed in the activities of SOD and GPX. Analysis of isoforms of antioxidant enzymes by native-PAGE and activity staining revealed three isoforms of GPX in unexposed dark-grown cotyledons (control), and their intensity was enhanced by UV-B exposure. In addition, four new isoforms of GPX were observed in cotyledons after UV-B exposure. Although no new isoforms were observed for the other antioxidant enzymes, the activities of their existing isoforms were enhanced by UV-B.  相似文献   
2.
p27(Kip1), an important regulator of Cdk2 activity and G1/S transition, is tightly regulated in a cell-type and condition-specific manner to integrate mitogenic and differentiation signals governing cell cycle progression. We show that p27 protein levels progressively declined from mid-G1 through late-G2 phase as density-arrested 3T3-L1 preadipocytes synchronously reentered the cell cycle during early stages of adipocyte differentiation. This dramatic fall in p27 protein accumulation was due, at least in part, to a decrease in protein stability. Specific inhibitors of the 26S proteasome were shown to completely block the decrease in p27 protein levels throughout G1, increase the abundance of ubiquitylated p27 protein, and inhibit G1/S transition resulting in G1 arrest. It is further demonstrated that p27 was phosphorylated on threonine 187 during S phase progression by Cdk2 and that phosphorylated p27 was polyubiquitylated and degraded. Furthermore, we demonstrate that Skp2 and Cks1 dramatically increased during S/G2 phase progression concomitantly with the maximal fall in p27 protein. Complete knockdown of Skp2 with RNA interference partially prevented p27 degradation equivalent to that observed with Cdk2 blockade suggesting that the SCF(Skp2) E3 ligase and other proteasome-dependent mechanisms contribute to p27 degradation during preadipocyte replication. Interestingly, Skp2-mediated p27 degradation was not essential for G1/S or S/G2 transition as preadipocytes shifted from quiescence to proliferation during adipocyte hyperplasia. Finally, evidence is presented suggesting that elevated p27 protein in the absence of Skp2 was neutralized by sequestration of p27 protein into Cyclin D1/Cdk4 complexes.  相似文献   
3.
4.
5.
6.
7.
Amyloidogenic intrinsically disordered proteins, α-synuclein and tau are linked to Parkinson's disease and Alzheimer's disease, respectively. A body of evidence suggests that α-synuclein and tau, both present in the presynaptic nerve terminals, co-aggregate in many neurological ailments. The molecular mechanism of α-synuclein-tau hetero-assembly is poorly understood. Here we show that amyloid formation is synergistically facilitated by heterotypic association mediated by binding-induced misfolding of both α-synuclein and tau K18. We demonstrate that the intermolecular association is largely driven by the electrostatic interaction between the negatively charged C-terminal segment of α-synuclein and the positively charged tau K18 fragment. This heterotypic association results in rapid formation of oligomers that readily mature into hetero-fibrils with a much shorter lag phase compared to the individual proteins. These findings suggested that the critical intermolecular interaction between α-synuclein and tau can promote facile amyloid formation that can potentially lead to efficient sequestration of otherwise long-lived lethal oligomeric intermediates into innocuous fibrils. We next show that a well-known familial Parkinson's disease mutant (A30P) that is known to aggregate slowly via accumulation of highly toxic oligomeric species during the long lag phase converts into amyloid fibrils significantly faster in the presence of tau K18. The early intermolecular interaction profoundly accelerates the fibrillation rate of A30P α-synuclein and impels the disease mutant to behave similar to wild-type α-synuclein in the presence of tau. Our findings suggest a mechanistic underpinning of bypassing toxicity and suggest a general strategy by which detrimental amyloidogenic precursors are efficiently sequestered into more benign amyloid fibrils.  相似文献   
8.
Ag+ resistance was initially found on the Salmonella enetrica serovar Typhimurium multi‐resistance plasmid pMG101 from burns patients in 1975. The putative model of Ag+ resistance, encoded by the sil operon from pMG101, involves export of Ag+ via an ATPase (SilP), an effluxer complex (SilCFBA) and a periplasmic chaperon of Ag+ (SilE). SilE is predicted to be intrinsically disordered. We tested this hypothesis using structural and biophysical studies and show that SilE is an intrinsically disordered protein in its free apo‐form but folds to a compact structure upon optimal binding to six Ag+ ions in its holo‐form. Sequence analyses and site‐directed mutagenesis established the importance of histidine and methionine containing motifs for Ag+‐binding, and identified a nucleation core that initiates Ag+‐mediated folding of SilE. We conclude that SilE is a molecular sponge for absorbing metal ions.  相似文献   
9.
10.
Hepatitis E virus (HEV) causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER) stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4). Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp), X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1) and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient model of the virus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号