首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1543篇
  免费   92篇
  2024年   2篇
  2023年   7篇
  2022年   32篇
  2021年   69篇
  2020年   38篇
  2019年   32篇
  2018年   51篇
  2017年   41篇
  2016年   67篇
  2015年   100篇
  2014年   101篇
  2013年   117篇
  2012年   165篇
  2011年   136篇
  2010年   81篇
  2009年   84篇
  2008年   85篇
  2007年   85篇
  2006年   71篇
  2005年   73篇
  2004年   58篇
  2003年   37篇
  2002年   44篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   10篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有1635条查询结果,搜索用时 15 毫秒
1.
To study the cytotoxic reactions responsible for mediating eosinophil damage to schistosomula of Schistosoma mansoni, we have used cytoplasts (eosinophil or neutrophil vesicles devoid of granules and nuclei, with an intact oxidase in their plasma membrane) in combination with purified eosinophil cationic protein (ECP) or major basic protein (MBP) in a cytotoxicity test toward schistosomula. Suboptimal concentrations of ECP (10(-6) M) or MBP (10(-6) M) resulting in less than 10% killing were used in combination with cytoplasts. Cytoplasts alone in the presence of immune serum tested over a wide range of cytoplast:schistosomula ratios generated superoxide and hydrogen peroxide, but were unable to damage schistosomula. However, when a suboptimal ECP concentration (10(-6) M) was combined with neutroplasts or eosinoplasts, 43.9% +/- 8.5 (n = 7) and 24.7% +/- 9.8 (n = 3), respectively, of the schistosomula were killed. Oxygen metabolites were responsible for the synergism, because cytoplasts from a patient with chronic granulomatous disease were unable to act in synergy with ECP. In contrast to ECP, no synergism was found between cytoplasts and MBP (10(-6) to 2 X 10(-5)M). These results show that oxygen metabolites are important for the killing of schistosomula by lowering the concentration of ECP needed to inflict damage.  相似文献   
2.
Blood was collected from newborn calves before and after their first milk intake after birth; extracts of plasma were assayed by radioimmunoassay for the presence of beta-casomorphin-7 immunoreactive materials. No beta-casomorphin immunoreactivity was found in samples collected before milk ingestion; however, in samples collected after milk ingestion a beta-casomorphin-7 immunoreactive material was detected. Chromatographic characterization showed that this material was not identical with beta-casomorphin-7 but might rather represent a precursor thereof. The material proved resistant to enzymatic attack during a 30-min incubation period at 37 degrees C in the plasma of newborn calves, whereas beta-casomorphin-7 was degraded under these conditions. A physiological significance of beta-casomorphin-7 eventually cleaved from such a precursor material at any site in the newborn mammal is suggested.  相似文献   
3.
Resealed erythrocyte membranes (ghosts) filled with (Fe3+)cytochrome c were used as an assay system to measure the release of superoxide (O-2) from human phagocytes into the incubation medium. Neutrophils, activated by either opsonized zymosan particles or the soluble stimulus phorbol myristate acetate, released O-2, which subsequently entered the ghosts and reduced (Fe3+)cytochrome c. This reaction was dependent on the time of incubation, the concentration of neutrophils, the concentration of stimulus, and the concentration of ghosts. The reaction was completely inhibited by superoxide dismutase and by 4,4'-diisothiocyano-2,2'-disulfonic acid, a specific blocker of anion channels in membranes. The reduction of (Fe3+)cytochrome c free in solution was about four times as fast as the reduction of (Fe3+)cytochrome c in the ghosts. Human eosinophils stimulated by phorbol myristate acetate reacted similarly to human neutrophils; the rate of O-2 production/cell was about twice as high for eosinophils as for neutrophils. In contrast, eosinophils stimulated with opsonized zymosan particles only reduced (Fe3+)cytochrome c free in solution, but not (Fe3+)cytochrome c in ghosts. This lack of reaction was not due to production of an inhibitor or below threshold generation of O-2 for the ghost assay. These results indicate: 1) activated human neutrophils and eosinophils can release O-2 or a similar product into the incubation medium; and 2) reduction of (Fe3+)cytochrome c free in solution is no proof for O-2 excretion by phagocytes.  相似文献   
4.
After interaction with so-called priming agents, the respiratory burst in human granulocytes does not become activated, but is enhanced upon subsequent stimulation with the chemoattractant FMLP. Investigating the mechanism of the priming reaction, we found that a transient rise in the cytosolic free calcium concentration [( Ca2+]i) suffices to irreversibly prime human granulocytes. Thus, platelet-activating factor (PAF) induced a transient increase in [Ca2+]i and primed the cells to an enhanced respiratory burst upon subsequent interaction with FMLP. Artificially, the transient rise in [Ca2+]i was mimicked by addition and subsequent removal of the Ca2+ ionophore ionomycin; this treatment too, primed the respiratory burst of the granulocytes. The priming induced by ionomycin was completely abolished when [Ca2+]i changes were buffered during exposure of the cells to the ionophore. The priming induced by PAF was only partially inhibited under [Ca2+]i-buffering conditions during priming, indicating that multiple pathways exist in the priming of granulocytes by PAF.  相似文献   
5.
6.
The magnitude of sodium and potassium fluxes in Lycopersicon escutentum cuhivars Ace and Edkawi (Edkawi is considered more sait-tolerant I was evaluated in planls grown for 10 days in aerated Hoagland solution with the addition of 25 or 100 mM NaCl. Ion accumulatiun in different plant pans, ion concentration in xylem exudate. transpiration and membrane leakiness were measured. Both cultivars responded very similarly to these levels of salinity in terms of growth. No conspicuous differences in membrane leakiness were observed. Net uprake rates were calculated from ion contents data. Potassium uptake rates were lower in salinized planls than in controls, especially in cv. Aee. Potassium/sodium selectivity ratios were much higher in Edkawi than in Ace. and higher in shoot uptake rates than in xy lem exudate. This indicates that Edakw i has a higher capacity to retain potassium under salinity, a character which could contribute to its salt-tolerance.  相似文献   
7.

Aim

Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe.

Location

Global.

Time period

Present.

Major taxa studied

Birds, mammals and amphibians.

Methods

Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a “species–energy model” by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in “wilderness” areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists.

Results

Species–energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R2-values: 0.79–0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57).

Main conclusions

Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species–area relationships to improve predictions of land-use-driven biodiversity loss.  相似文献   
8.
Karina Boege 《Oikos》2004,107(3):541-548
Induced changes in plant quality are hypothesized to reduce herbivore numbers and subsequent damage to the plant. The resultant decrease in herbivory may be due to direct negative impacts on herbivores, through the reduction in foliage quality as food, or due to indirect effects of plant-induced traits interacting with the third trophic level, increasing predation and parasitism rates on herbivores. The relative importance of induced responses as direct and/or indirect defenses has not been evaluated in natural systems. Moreover, few studies have evaluated the influence of early-season damage on late-season herbivory in natural systems, particularly in the tropics. The presence of induced responses and subsequent impact on folivory as a consequence of early-season damage were evaluated in three plant species ( Croton pseudoniveus , Bursera instabilis and Piper stipulaceum ) in a tropical dry forest in Mexico. A two-factorial experiment was applied to determine if induced responses influenced subsequent herbivory directly, by reducing foliage quality, or indirectly, through their interaction with parasitoids and predatory arthropods. Plants from all three species with reduced early-season damage had higher herbivory rates through the rest of the growing season, compared to plants that were damaged during leaf expansion. Chemical analyses showed that early-season damage induced the production of total phenolics and condensed tannins for C. pseudoniveus and B. instabilis , respectively. The mechanism by which these compounds affected subsequent herbivory was most likely by directly reducing foliage quality as food for herbivores, given that predatory arthropods and parasitoids had no effects on herbivory in this study. I conclude that early-season damage in these three species influenced later-season herbivory through the induction of plant responses that may act to reduce plant quality as food for herbivores.  相似文献   
9.
10.
Nitrogen fixation and assimilation in nodules and roots were studied in soybean (Glycine max L.) exposed to different levels of aluminium (Al) stress (0, 50, 200 and 500 μM). Al at 500 μM induced oxidative stress, which became evident from an increase in lipid peroxidation accompanied by a concomitant decline in antioxidant enzyme activities and leghaemoglobin breakdown. Consequently, there was also a reduction in nitrogenase activity. However, the leghaemoglobin levels and nitrogenase activity were unexpectedly found to be higher in nodules when the plants were treated with 200 μM Al. Of the enzymes involved in nitrogen assimilation, the activity of glutamate dehydrogenase-NADH was reduced in nodules under Al stress, but it was significantly higher in roots at 500 μM Al as compared to that in the control. In nodules, the glutamine synthetase/glutamate synthase-NADH pathway, assayed in terms of activity and expression of both the enzymes, was inhibited at >50 μM Al; but in roots this inhibitory effect was apparent only at 500 μM Al. No significant changes in ammonium and protein contents were recorded in the nodules or roots when the plants were treated with 50 μM Al. However, Al at ≥200 μM significantly increased the ammonium levels and decreased the protein content in the nodules. But these contrasting effects on ammonium and protein contents due to Al stress were observed in the roots only at 500 μM Al. The results suggest that the effect of Al stress on nitrogen assimilation is more conspicuous in nodules than that in the roots of soybean plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号