首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   10篇
  2021年   3篇
  2019年   1篇
  2018年   5篇
  2016年   1篇
  2015年   11篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1977年   1篇
  1954年   1篇
  1952年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
The liver stages of Plasmodium parasites are important targets for the development of anti-malarial vaccine candidates and chemoprophylaxis approaches that aim to prevent clinical infection. Analyzing the impact of interventions on liver stages in the murine malaria model system Plasmodium yoelii has been cumbersome and requires terminal procedures. In vivo imaging of bioluminescent parasites has previously been shown to be an effective and non-invasive alternative to monitoring liver stage burden in the Plasmodium berghei model. Here we report the generation and characterization of a transgenic P. yoelii parasite expressing the reporter protein luciferase throughout the parasite life cycle. In vivo bioluminescent imaging of these parasites allows for quantitative analysis of P. yoelii liver stage burden and parasite development, which is comparable to quantitative RT-PCR analysis of liver infection. Using this system, we show that both BALB/cJ and C57BL/6 mice show comparable susceptibility to P. yoelii infection with sporozoites and that bioluminescent imaging can be used to monitor protective efficacy of attenuated parasite immunizations. Thus, this rapid, simple and noninvasive method for monitoring P. yoelii infection in the liver provides an efficient system to screen and evaluate the effects of anti-malarial interventions in vivo and in real-time.  相似文献   
2.
Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.  相似文献   
3.
4.
Plasmodium undergoes one round of multiplication in the liver prior to invading erythrocytes and initiating the symptomatic blood phase of the malaria infection. Productive hepatocyte infection by sporozoites leads to the generation of thousands of merozoites capable of erythrocyte invasion. Merozoites are released from infected hepatocytes as merosomes, packets of hundreds of parasites surrounded by host cell membrane. Intravital microscopy of green fluorescent protein-expressing P. yoelii parasites showed that the majority of merosomes exit the liver intact, adapt a relatively uniform size of 12-18 microm, and contain 100-200 merozoites. Merosomes survived the subsequent passage through the right heart undamaged and accumulated in the lungs. Merosomes were absent from blood harvested from the left ventricle and from tail vein blood, indicating that the lungs effectively cleared the blood from all large parasite aggregates. Accordingly, merosomes were not detectable in major organs such as brain, kidney, and spleen. The failure of annexin V to label merosomes collected from hepatic effluent indicates that phosphatidylserine is not exposed on the surface of the merosome membrane suggesting the infected hepatocyte did not undergo apoptosis prior to merosome release. Merosomal merozoites continued to express green fluorescent protein and did not incorporate propidium iodide or YO-PRO-1 indicating parasite viability and an intact merosome membrane. Evidence of merosomal merozoite infectivity was provided by hepatic effluent containing merosomes being significantly more infective than blood with an identical low-level parasitemia. Ex vivo analysis showed that merosomes eventually disintegrate inside pulmonary capillaries, thus liberating merozoites into the bloodstream. We conclude that merosome packaging protects hepatic merozoites from phagocytic attack by sinusoidal Kupffer cells, and that release into the lung microvasculature enhances the chance of successful erythrocyte invasion. We believe this previously unknown part of the plasmodial life cycle ensures an effective transition from the liver to the blood phase of the malaria infection.  相似文献   
5.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   
6.
Three novel chiral packing materials for high-performance liquid chromatography were prepared by covalently binding of (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]propan-amide (7), (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]-4-methylpentanamide (8), and (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonyl-amino]-2-phenylacetamide (9) to aminopropyl silica. The resulting chiral stationary phases (CSPs 1-3) proved effective for the resolution of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidone derivatives (TR 1-14). The mechanism of their enantioselection, supported by the elution order of (S)-TR 13 and (R)-TR 13 and molecular modeling of the complex of the slower running (S)-TR 13 with CSP 1 is discussed.  相似文献   
7.

Background

Maraviroc activity against HIV-2, a virus naturally resistant to different HIV-1 antiretroviral drugs, has been recently demonstrated. The aim of this study was to assess HIV-2 susceptibility to cenicriviroc, a novel, once-daily, dual CCR5 and CCR2 antagonist that has completed Phase 2b development in HIV-1 infection.

Methods

Cenicriviroc phenotypic activity has been tested using a PBMC phenotypic susceptibility assay against four R5-, one X4- and one dual-tropic HIV-2 clinical primary isolates. All isolates were obtained by co-cultivation of PHA-activated PBMC from distinct HIV-2-infected CCR5-antagonist-naïve patients included in the French HIV-2 cohort and were previously tested for maraviroc susceptibility using the same protocol. HIV-2 tropism was determined by phenotypic assay using Ghost(3) cell lines.

Results

Regarding the 4 R5 HIV-2 clinical isolates tested, effective concentration 50% EC50 for cenicriviroc were 0.03, 0.33, 0.45 and 0.98 nM, similar to those observed with maraviroc: 1.13, 0.58, 0.48 and 0.68 nM, respectively. Maximum percentages of inhibition (MPI) of cenicriviroc were 94, 94, 93 and 98%, similar to those observed with maraviroc (93, 90, 82, 100%, respectively). The dual- and X4-tropic HIV-2 strains were resistant to cenicriviroc with EC50 >1000 nM and MPI at 33% and 4%, respectively.

Conclusions

In this first study assessing HIV-2 susceptibility to cenicriviroc, we observed an in vitro activity against HIV-2 R5-tropic strains similar to that observed with maraviroc. Thus, cenicriviroc may offer a once-daily treatment opportunity in the limited therapeutic arsenal for HIV-2. Clinical studies are warranted.  相似文献   
8.
Plasmodium parasites possess a single pyruvate dehydrogenase (PDH) enzyme complex that is localized to the plastid‐like organelle known as the apicoplast. Unlike most eukaryotes, Plasmodium parasites lack a mitochondrial PDH. The PDH complex catalyses the conversion of pyruvate to acetyl‐CoA, an important precursor for the tricarboxylic acid cycle and type II fatty acid synthesis (FAS II). In this study, using a rodent malaria model, we show that the PDH E1α and E3 subunits colocalize with the FAS II enzyme FabI in the apicoplast of liver stages but are not significantly expressed in blood stages. Deletion of the E1α or E3 subunit genes of Plasmodium yoelii PDH caused no defect in blood stage development, mosquito stage development or early liver stage development. However, the gene deletions completely blocked the ability of the e1α and e3 parasites to form exo‐erythrocytic merozoites during late liver stage development, thus preventing the initiation of a blood stage infection. This phenotype is similar to that observed for deletions of genes involved in FAS II elongation. The data strongly support the hypothesis that the sole role of PDH is to provide acetyl‐CoA for FAS II.  相似文献   
9.
The malaria parasite liver stage produces tens of thousands of red cell-infectious forms within its host hepatocyte. It is thought that the vacuole-enclosed parasite completely depends on the host cell for successful development but the molecular parasite-host cell interactions underlying this remarkable growth have remained elusive. Using a yeast two-hybrid screen and a yeast overexpression system we show that UIS3, a parasite protein essential for liver stage development, interacts directly with liver-fatty acid binding protein, L-FABP. Down-regulation of L-FABP expression in hepatocytes severely impairs parasite growth and overexpression of L-FABP promotes growth. This is the first identified direct liver stage-host cell protein interaction, providing a possible explanation for the importance of UIS3 in liver infection.  相似文献   
10.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号