首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   9篇
  2018年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有37条查询结果,搜索用时 713 毫秒
1.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
2.
Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.  相似文献   
3.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
4.
Recent studies indicate that relatively few genomic regions are repeatedly involved in the evolution of Heliconius butterfly wing patterns. Although this work demonstrates a number of cases where homologous loci underlie both convergent and divergent wing pattern change among different Heliconius species, it is still unclear exactly how many loci underlie pattern variation across the genus. To address this question for Heliconius erato, we created fifteen independent crosses utilizing the four most distinct color pattern races and analyzed color pattern segregation across a total of 1271 F2 and backcross offspring. Additionally, we used the most variable brood, an F2 cross between H. himera and the east Ecuadorian H. erato notabilis, to perform a quantitative genetic analysis of color pattern variation and produce a detailed map of the loci likely involved in the H. erato color pattern radiation. Using AFLP and gene based markers, we show that fewer major genes than previously envisioned control the color pattern variation in H. erato. We describe for the first time the genetic architecture of H. erato wing color pattern by assessing quantitative variation in addition to traditional linkage mapping. In particular, our data suggest three genomic intervals modulate the bulk of the observed variation in color. Furthermore, we also identify several modifier loci of moderate effect size that contribute to the quantitative wing pattern variation. Our results are consistent with the two-step model for the evolution of mimetic wing patterns in Heliconius and support a growing body of empirical data demonstrating the importance of major effect loci in adaptive change.  相似文献   
5.
The central complex is a major integrative region within the insect brain with demonstrated roles in spatial orientation, the regulation of locomotor behavior, and sound production. In the hemimetabolous grasshopper, the central complex comprises the protocerebral bridge, central body (CB), ellipsoid body, noduli, and accessory lobes, and this modular organization develops entirely during embryogenesis. From a biochemical perspective, a range of neuroactive substances has been demonstrated in these modules of the adult central complex, but little is known about their developmental expression. In this study, we use matrix‐assisted laser desorption/ionization‐imaging mass spectrometry on single brain slices to confirm the presence of several peptide families (tachykinin, allatostatin, periviscerokinin/pyrokinin, FLRFamide, and neuropeptide F) in the adult central complex and then use immunohistochemistry and histology to examine their developmental expression, together with that of the indolamin serotonin, and the endogenous messenger nitric oxide (NO; via its synthesizing enzyme). We find that each neuromodulator is expressed according to a unique, stereotypic, pattern within the various modules making up the central complex. Neuropeptides such as tachykinin (55%) and allatostatin (65%), and the NO‐synthesizing enzyme diaphorase (70%), are expressed earlier during embryonic development than the biogenic amine serotonin (80%), whereas periviscerokinin‐like peptides and FLRFamide‐like peptides begin to be expressed only postembryonically. Within the CB, these neuroactive substances are present in tangential projection neurons before they appear in columnar neurons. There is also no colocalization of serotonin‐positive and peptide‐positive projections up to the third larval instar during development, consistent with the clear dorsoventral layering of the neuropil we observe. Our results provide the first neurochemical fingerprint of the developing central complex in an hemimetabolous insect. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
6.
Whilst parthenogenesis has evolved multiple times from sexual invertebrate and vertebrate lineages, the drivers and consequences of the sex-asex transition remain mostly uncertain. A model by Stouthamer et al. recently published in BMC Evolutionary Biology shows a pathway by which obligate asexuality could be selected for following endosymbiont infection.  相似文献   
7.
8.
Vector‐borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito‐associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next‐generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered (Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human‐impacted landscapes that may ultimately affect vector‐borne disease risk.  相似文献   
9.

Background

Inherited bacteria that kill male offspring, male-killers, are known to be common in insects, but little is understood about the mechanisms used by male-killing bacteria to kill males. In this paper we describe the tempo and changes that occur during male-killing by Spiroplasma bacteria in the host Drosophila nebulosa.

Results

Spiroplasma infected D. nebulosa males were developmentally retarded from 6–8 h into embryonic development at 25°C, and arrested at between stages 12 and 13 of embryogenesis (10–12 h). Dying males were characterized by a failure to form segments, and ultimately disintegration of the normal oval embryonic shape. Prior to death, dying males exhibited widespread apoptosis, as testified by TUNEL staining.

Conclusion

The Spiroplasma kills male Drosophila in a narrow developmental period, shortly after the formation of the host dosage compensation complex that is required for male-killing. Male death is preceded by widespread apoptosis, but it is uncertain if this is primary or secondary apoptosis.  相似文献   
10.
In metropolitan areas people travel frequently and extensively but often in highly structured commuting patterns. We investigate the role of this type of human movement in the epidemiology of vector-borne pathogens such as dengue. Analysis is based on a metapopulation model where mobile humans connect static mosquito subpopulations. We find that, due to frequency dependent biting, infection incidence in the human and mosquito populations is almost independent of the duration of contact. If the mosquito population is not uniformly distributed between patches the transmission potential of the pathogen at the metapopulation level, as summarized by the basic reproductive number, is determined by the size of the largest subpopulation and reduced by stronger connectivity. Global extinction of the pathogen is less likely when increased human movement enhances the rescue effect but, in contrast to classical theory, it is not minimized at an intermediate level of connectivity. We conclude that hubs and reservoirs of infection can be places people visit frequently but briefly and the relative importance of human and mosquito populations in maintaining the pathogen depends on the distribution of the mosquito population and the variability in human travel patterns. These results offer an insight in to the paradoxical observation of resurgent urban vector-borne disease despite increased investment in vector control and suggest that successful public health intervention may require a dual approach. Prospective studies can be used to identify areas with large mosquito populations that are also visited by a large fraction of the human population. Retrospective studies can be used to map recent movements of infected people, pinpointing the mosquito subpopulation from which they acquired the infection and others to which they may have transmitted it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号