首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1580篇
  免费   94篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   29篇
  2020年   7篇
  2019年   23篇
  2018年   32篇
  2017年   24篇
  2016年   39篇
  2015年   52篇
  2014年   62篇
  2013年   86篇
  2012年   128篇
  2011年   128篇
  2010年   80篇
  2009年   66篇
  2008年   113篇
  2007年   117篇
  2006年   96篇
  2005年   78篇
  2004年   93篇
  2003年   90篇
  2002年   74篇
  2001年   26篇
  2000年   22篇
  1999年   16篇
  1998年   14篇
  1997年   18篇
  1996年   11篇
  1995年   9篇
  1994年   7篇
  1993年   6篇
  1992年   17篇
  1991年   14篇
  1990年   11篇
  1989年   11篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
  1937年   1篇
排序方式: 共有1675条查询结果,搜索用时 281 毫秒
1.
Kinetics of the change of photosystem (PS) composition in cyanobacteriainduced by chromatic light were studied in relation to cellproliferation. The study was made for two unicellular strains,Synechococcus NIBB 1059 and Synechocystis (Aphanocapsa) PCC6714. We found that (1) the change to a higher or lower PS I/IIratio was due to acceleration or suppression of apparent PSI formation, and (2) it progressed on a similar time scale tothat of the cell proliferation. The apparent rate constant ofthe change in the PS I/II ratio was proportional to that ofcell proliferation, µ, when this was low, but at highvalues of µ the increase in the rate constant of the changein the PS I/II ratio became smaller, causing a deviation fromthe linear relationship. Results indicate that under autotrophicconditions, the photoregulated composition change occurs asa result of thylakoid development, which accompanies cell proliferation. (Received June 23, 1986; Accepted December 5, 1986)  相似文献   
2.
Kimata Y  Hase T 《Plant physiology》1989,89(4):1193-1197
Four ferredoxin isoproteins were identified in the C4 plant Zea mays L. by analysis of extracts from leaves, mesocotyls, and roots of the young seedlings. The relative amounts of the isoproteins isolated from the photosynthetic and nonphotosynthetic organs were different. All the isoproteins were present in the leaves of green and etiolated plants, whereas two out of the four isoproteins were not detected in the roots or in the mesocotyls. During the greening of etiolated seedlings, the level of the two isoproteins unique to the leaf increased markedly. Analysis of the cellular and subcellular distribution of the two major leaf isoproteins showed that one isoprotein was present in the chloroplasts of both mesophyll and bundle sheath cells, whereas the other was only found in the chloroplasts of bundle sheath cells. This is the first report of the cell-specific expression of ferredoxin isoproteins in the leaves of a C4 plant.  相似文献   
3.
Y Okada  H Konomi  T Yada  K Kimata  H Nagase 《FEBS letters》1989,244(2):473-476
The degradation of type IX collagen, a minor collagen in cartilage, was examined by treatment with three different types of matrix metalloproteinases (MMPs) purified from the culture medium of rheumatoid synovial cells. Neither MMP-1 (collagenase) nor MMP-2 (so-called 'gelatinase') could digest type IX collagen, but MMP-3 (stromelysin) readily degraded it into smaller fragments. This suggests that MMP-3 may be responsible for the pathological degradation and/or normal turnover of type IX collagen.  相似文献   
4.
Cells of the auxotrophic mutant, Ad1, of Datura innoxia requiredadenine, adenosine, or inosine for their growth on solid agarmedium which contained Murashige-Skoog salts, 2,4-dichloro-phenoxyaceticacid, and sucrose. Thirteen purine and pyrimidine nucleotidesin extracts of wild-type and Ad1 cells were separated and quantifiedby HPLC. Levels of ADP-glucose and UMP were significantly higherin Ad1 than in wild-type cells, but those of other nucleotideswas found when Ad1 cells were transferred to fresh medium withoutadenine. The rate of the biosynthesis de novo of purines, asestimated from the rate of incorporation of 14C from [2-14C]-glycine and [14C]formate into adenine nucleotides, was reducedin Ad1 cells to 21 and 13% of the wild-type rate, respectively.The activities involved in the salvage of adenine and adenosinein Ad1 cells were similar to those in wild-type cells. Ad1 cellshad the capability to convert adenine to guanine nucleotidesand guanine to adenine nucleotides. 1 Part 27 of the series, "Metabolic Regulation in Plant CellCulture". (Received March 7, 1988; Accepted August 3, 1988)  相似文献   
5.
Extraction of the skin of newborn rat yielded two populations of galactosaminoglycan-containing proteoglycan: a Mr = 111,000-200,000 dermatan sulfate proteoglycan (DS-PG) with a Mr congruent to 55,000 core glycoprotein and a Mr congruent to 10(6) chondroitin sulfate proteoglycan (CS-PGs) composed of two subpopulations with different size core-glycoproteins (Mr congruent to 480,000 and 520,000). Tryptic peptide mapping of chondroitinase-treated DS-PG and CS-PGs indicated that the peptide patterns observed with the two core molecules from CS-PGs were identical with each other but distinct from the peptide pattern of the DS-PG core molecule. It is likely therefore that the two forms of CS-PGs are derived from the same gene product by post-translational modification or partial degradation, but DS-PG is derived from a distinct gene product. Comparison of the concentration (hexuronate/DNA) of the proteoglycans in newborn and fetal rat skin showed an age-related change in proteoglycan composition; at 4 days before birth, the uronic acid proportions, DS-PG:CS-PGs, were about 14:1 and during the next 4 days, DS-PG increased 2.2-fold whereas CS-PGs decreased 4-fold. On a per DNA basis, the rate of [3H]serine incorporation into CS-PGs was 2.5 times the rate for DS-PG at 4 days before birth but decreased by 95% during the next 4 days. The rate for DS-PG also decreased but to a much lesser extent, so that by 2 days before birth, it began to exceed the rate for CS-PGs. The striking change in the concentration and labeling rate of CS-PGs can be interpreted either as a decrease of CS-PGs synthesis, or as an increase of CS-PGs breakdown, or both, a process which might be involved in the transition of extracellular matrix from a fetal type to a newborn or adult type.  相似文献   
6.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   
7.
Isolation of two forms of basement membrane proteoglycans   总被引:22,自引:0,他引:22  
Sequential extractions of the basement membrane producing Engelbreth-Holm-Swarm tumor yielded heparan sulfate proteoglycans with different size core proteins, but the same size heparan sulfate side chains. Saline, a nondenaturing solvent, extracted a small high density proteoglycan with a heterodisperse core protein of Mr = 95,000-130,000 whereas subsequent extraction with 7 M urea, a denaturing solvent, removed a large, low density proteoglycan with a Mr = 350,000-400,000 protein core. The denaturing conditions required for extraction of the large proteoglycan suggest that it interacts strongly with other basement membrane components. Antibodies to these proteoglycans cross-react with both proteoglycans, but the large proteoglycan has additional antigenic sites not present on the small proteoglycan. These proteoglycans may be derived from the same or similar gene products.  相似文献   
8.
Chick-embryo cartilage contains a unique set of proteoglycans. Type H proteoglycan (PG-H) is the most abundant, constituting over 90% of the total cartilage hexuronate. We previously showed that treatment of PG-H with chondroitinase ACII and keratanase yields a protein-enriched core molecule [PG(-CS,KS)] with enzymically modified linkage oligosaccharides of the chondroitin sulphate and keratan sulphate chains. We report here that further treatment of PG(-CS,KS) with pepsin and N-oligosaccharide glycopeptidase (almond glycopeptidase) released four distinct types of mannose-containing oligosaccharide. Two of them were shown to be: (Formula: see text). Of the mannose-containing glycopeptides formed by pepsin digestion, about 40% (as mannose) were resistant to N-oligosaccharide glycopeptidase. Since the resistant fraction was enriched in keratan sulphate remnants, it is suggest that the mannose-containing oligosaccharides in this fraction represent those located in a keratan sulphate-enriched region of PG-H.  相似文献   
9.
Chick embryo epiphyseal cartilage has been shown to contain three different proteoglycan species (PG-H, PG-Lb, and PG-Lt). This report is concerned with the purification and characterization of the third proteoglycan, PG-Lt. The proteoglycan can be separated from the other two by virtue of its low buoyant density in a CsCl density gradient and further purified by consecutive ion exchange and gel chromatography. The final preparation is composed of PG-Lt monomer and PG-Lt oligomer. The amino acid composition of PG-Lt is quite different from that of PG-H and PG-Lb and rather resembles that of collagens with respect to high content of glycine and high degrees of hydroxylation of proline and lysine. PG-Lt monomer is composed of disulfide-bonded subunits of Mr congruent to 120,000 and 190,000 as demonstrated by its gel electrophoretic behavior after reduction with 2-mercaptoethanol. The latter, but not the former, contains dermatan sulfate chains with glucuronic acid/iduronic acid residues and yields a protein-enriched core molecule of Mr congruent to 100,000 after digestion with chondroitinase ABC. Both of the protein subunits are completely digestible with bacterial collagenase. Immunofluorescence microscopic examination of cartilage tissues, using an antibody against PG-Lt, shows that this proteoglycan exists in both the cartilage matrix and perichondrial noncartilagenous region. When chondrocytes are plated onto tissue culture dishes, the antibody stains strands found on the cell surfaces and in the intercellular space of substrate-attached cell layers, suggesting that PG-Lt mediates cell-to-cell and cell-to-substrate contacts.  相似文献   
10.
Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号