首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
A recombinant Escherichia coli was engineered to produce the commercially important amino acid L: -phenylalanine (L: -Phe) using glycerol as the carbon source. Compared to the conventionally used glucose and sucrose, glycerol is a less expensive carbon source. As phenylalanine dehydrogenase (PheDH) activity is involved in the last step of L: -Phe synthesis in E. coli, a phenylalanine dehydrogenase gene (phedh) from the thermotolerant Bacillus lentus was cloned into pRSFDuet-1 (pPheDH) and expressed in E. coli BL21(DE3). The resulting clone had a limited ability to produce L: -Phe from glycerol, possibly because of a poor glycerol uptake by the cell, or an inability to excrete L: -Phe, or both. Therefore, yddG gene encoding an aromatic amino acid exporter and glpF gene encoding a glycerol transport facilitator were coexpressed with the phedh in a reengineered E. coli. In a glycerol medium, the maximum L: -Phe production rates of the clones pPY (phedh and yddG genes) and pPYF (phedh, yddG and glpF genes) were 1.4- and 1.8-fold higher than the maximum production rate of the pPheDH clone. The better producing pPYF clone was further evaluated in a 5?l stirred-tank fermenter (37?°C, an aeration rate of 1 vvm, an agitation speed of 400?rpm). In the fermenter, the maximum concentration of L: -Phe (366?mg/l) was achieved in a much shorter period compared to in the shake flasks. In the latter, the highest titer of L: -Phe was only 76?% of the maximum value attained in the fermenter.  相似文献   
2.
Hairy root cultures of Mitracarpus hirtus L. were obtained after transforming leaf-disc explants with wild strain Agrobacterium rhizogenes A13. The root cultures of M. hirtus showed high efficiency of shoot formation in both transformed and non-transformed cultures when illuminated with light. However, transformed hairy root proliferation was approximately 3.8–5 times higher than the control in both solidified and liquid plant growth regulator free media. Putatively transformed roots were identified by the presence of the rol gene via PCR. Integration of the rol gene into the plant genome was confirmed via Southern blot analysis after 5 months with no detection in non-transformed roots. In addition, the effect of 2-chloro-4-pyridyl-N-phenylurea (CPPU), a synthetic cytokinin, when applied as an elicitor for hairy root cultures of M. hirtus was investigated. The 24-day-old hairy root cultures of high root proliferation line R107-3, were incubated for 48 h in media supplemented with 0 or 5 mg l?1 CPPU. The methanolic extracts of root tissues were subsequently analyzed for biochemical constituents using Gas Chromatography Mass Spectrometry (GC-MS). The alteration of plant secondary metabolites produced after CPPU treatment was analyzed. Compared to the control (with quality higher than 80 %), six unique compounds were found, five original compounds absent, 11 with increased, and five with decreased contents. Increased contents of two metabolites, chrysophanol and 2-methoxy-4-vinylphenol, showed pharmaceutical potential. CPPU was also found to elicit the alkaloid compound, Eseroline, 7-bromo-, methylcarbamate (ester), which could not be detected in the non-treated sample. The findings of this study demonstrate the establishment of transgenic hairy root of M. hirtus and the application of CPPU as an elicitor to induce variations in plant secondary metabolite that shows its potential to apply for bio-reactor system.  相似文献   
3.
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.  相似文献   
4.
The production of l-phenylalanine is conventionally carried out by fermentations that use glucose or sucrose as the carbon source. This work reports on the use of glycerol as an inexpensive and abundant sole carbon source for producing l-phenylalanine using the genetically modified bacterium Escherichia coli BL21(DE3). Fermentations were carried out at 37°C, pH 7.4, using a defined medium in a stirred tank bioreactor at various intensities of impeller agitation speeds (300–500 rpm corresponding to 0.97–1.62 m s−1 impeller tip speed) and aeration rates (2–8 L min−1, or 1–4 vvm). This highly aerobic fermentation required a good supply of oxygen, but intense agitation (impeller tip speed ~1.62 m s−1) reduced the biomass and l-phenylalanine productivity, possibly because of shear sensitivity of the recombinant bacterium. Production of l-phenylalanine was apparently strongly associated with growth. Under the best operating conditions (1.30 m s−1 impeller tip speed, 4 vvm aeration rate), the yield of l-phenylalanine on glycerol was 0.58 g g−1, or more than twice the best yield attainable on sucrose (0.25 g g−1). In the best case, the peak concentration of l-phenylalanine was 5.6 g L−1, or comparable to values attained in batch fermentations that use glucose or sucrose. The use of glycerol for the commercial production of l-phenylalanine with E. coli BL21(DE3) has the potential to substantially reduce the cost of production compared to sucrose- and glucose-based fermentations.  相似文献   
5.
d-Threonine dehydrogenase (EC 1.1.1) catalyses the oxidation of the 3-hydroxyl group of d-threonine. The nucleotide sequence of the structural gene, dtdS, for this enzyme from Pseudomonas cruciviae IFO 12047 was determined. The dtdS gene encodes a 292 amino acid polypeptide. The enzyme was overproduced in Escherichia coli cells; the activity was found in cell extracts of the clone. The enzyme showed high sequence similarity to 3-hydroxyisobutyrate dehydrogenases. This is the first example showing the primary structure of an enzyme catalysing the NADP+-dependent dehydrogenation of d-threo-3-hydroxyamino acids.  相似文献   
6.
Cyclodextrin glycosyltransferase (CGTase) from Paenibacillus sp. RB01 and its recombinant enzyme exhibit three isoforms (I, II, and III) with the same apparent size but different charge. Here, we demonstrate for the first time that the deamidation of labile Asns causes the change in molecular forms of CGTase. The faster increase in number of isoforms was observed upon incubation in deamidation buffer at the more alkaline pH. The increase in levels of isoform II and III over time correlated with the increase in isoaspartate, a unique deamidation product. The predicted labile Asns were individually mutated to Asp, then the selected mutant and wild type isoforms were tryptic digested and labile Asns were investigated by MALDI-TOF. From the results, Asn427 was the most susceptible residue for deamidation, followed by Asn336, Asn415, and Asn567. In addition, Gln389 might also share a role. The advantage of using appropriate CGTase isoform in cyclodextrin production is reported.  相似文献   
7.
Tetraploid plants were successfully induced for the first time in Mitracarpus hirtus L., by overnight immersion of shoot meristems in 0.1 % colchicine solution, followed by in vitro culture leading to plant regeneration. Examination of ploidy level by flow cytometric analysis and counting chromosome number at metaphase confirmed that original diploid plant (WT1) contained chromosome number as 2n = 2x = 28, whereas 2n = 4x = 56 was observed in the tetraploids induced with colchicine treatment (CC102 and CC110). Thicker root formation, larger stomata (1.3–2 times), and lower density of stomata (1.7–4 times) were observed in these tetraploid plants. After transplantation to the pot, tetraploid plant (CC110) showed higher fresh weights of aerial part and leaves (1.5 and 1.4 times respectively) than diploid. However, the methanolic extracts from leaves of tetraploid line CC102 showed inhibition against human pathogenic bacterium, S. aureus while WT1 and CC110 showed no activity. GC–MS revealed 40 unique compounds present in CC102, but absent in WT1 and CC110. Through hierarchical clustering analysis the 40 unique compounds in CC102 formed a cluster group found to correlate with anti-S. aurens activity. These results suggested that tetraploid M. hirtus CC102 created in this study provides a novel source of compounds useful in fighting infectious disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号