首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Polyhydroxyalkanoates (PHAs) accumulating bacteria were isolated under various selective conditions such as pH, salt concentrations and types of heavy metal. Fifty strains of bacterial isolates were found to belong to Bacillus, Proteus, Pseudomonas, Aeromonas, Alcaligenes and Chromobacterium, based on phenotypical features and genotypic investigation. Only twenty five bacterial isolates were selected and observed for the production of PHAs. Interestingly, bacteria belonging to Firmucutes Bacillus sp. produced a high amount of PHAs. The maximum PHAs were accumulated by B. licheniformis PHA 007 at 68.80% of dry cell weight (DCW). Pseudomonas sp., Aeromonas sp., Alcaligenes sp. and Chromobacterium sp. were recorded to produce a moderate amount of PHAs, varying from 10.00-44.32% of DCW. The enzymatic activity was preliminarily analyzed by the ratio of the clear zone diameter to colony diameter. Bacillus gave the highest ratio of hydrolysis zone which corresponds to the highest hydrolytic enzyme activities. Bacillus licheniformis PHA 007 had the highest lipase and protease activity at 2.1 and 5.1, respectively. However, the highest amylase activity was observed in Bacillus sp. PHA 023 at 1.4. Determination of metabolic characteristics was also investigated to check for their ability to consume a wide range of substrates. Bacillus, Aeromonas sp. and Alcaligenes sp. had great ability to utilize a variety of substrates. To decrease high PHA cost, different sources of cheap substrates were tested for the production of PHAs. Bacillus cereus PHA 008 gave the maximal yield of PHA production (64.09% of DCW) when cultivated in anaerobically treated POME. In addition, the accumulation of PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate was also observed in Bacillus and Pseudomomas sp. strain 012 and 045, respectively. Eight of the nine isolates accumulated a significant amount of PHAs when inexpensive carbon sources were used as substrates. Here it varied from 1.69% of DCW by B. licheniformis PHA 007 to 64.09% of DCW by B. cereus PHA 008.  相似文献   
2.
Interaction studies using central composite design (CCD) gave the optimum concentrations of acetate at 4 g l(-1) and (NH4)2SO4 at 0.01 g l(-1) with an optimum temperature of 35 degrees C. Rhodobacter sphaeroides N20 gave the highest PHB (7.8 g l(-1)) and biomass (DCW) (8.2 g l(-1)) values compared to the wild type strain and the mutant strain U7. The CCD results predicted that the optimum medium for the mutant strain N20 consisted of 3.90 g l(-1) acetate, 0.01 g l(-1) (NH4)2SO4 at 33.5 degrees C (R2=0.985). Validation of this model by culturing the mutant strain in this optimum medium exhibited similar values of PHB (7.76 g l(-1)), biomass (8.32 g l(-1)) and the PHB content in the cell 93.2% of DCW. Similar amounts of PHB were also obtained in batch fermentations using a 5-l bioreactor. The effect of pH and aeration rate was also studied and the optimum values were found to be pH 7.0 with an aeration rate of 1.0 vvm. Under these optimal conditions, strain N20 produced the highest amount of PHB production (8.76 g l(-1)), PHB content (95.4% of DCW) as well as the product yield (Yp/x) (0.72). These results are the highest values ever obtained from photosynthetic bacteria reported so far.  相似文献   
3.
The purpose of this study was to enhance the production of polyhydroxyalkanoate (PHA) by sequential mutation of Bacillus licheniformis PHAs-007, using UV and N-methyl-N′-nitro-N-nitrosoguanidine (NTG). In addition, the effect of nutrient additions and environmental conditions were optimized to increase the production of PHA. Bacillus licheniformis PHAs-007 produced high amounts of PHA (64.09 ~ 68.80% of DCW) under both synthetic and renewable substrates. After mutagenesis treatment, mutant M2-12 was selected from 380 strains, based on its high biomass and PHA concentration. The mutant M2-12 gave the highest value of specific growth rate (0.09/h), biomass (22.24 g/L) and PHA content (19.55 g/L) under optimal conditions, consisting of 3% palm oil mill effluent, with no additional trace elements, at 45oC and pH 7. The mutant strain showed higher resistance to substrate concentrations, as well as pH and temperature, than the wild type. The accumulation of PHA was increased by 3.18-fold compared to the wild type, and the production of PHA by the mutant M2-12 was constantly retained over 12 times of cultivation. The mutation and optimization strategy appear to be suitable for producing high density PHA, reducing the medium cost and consequently lowering the production cost. Interestingly, the mutant strain could synthesize the novel PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate, which were not produced by the wild type.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号