首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   21篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   19篇
  2020年   7篇
  2019年   10篇
  2018年   15篇
  2017年   7篇
  2016年   12篇
  2015年   24篇
  2014年   25篇
  2013年   27篇
  2012年   37篇
  2011年   37篇
  2010年   17篇
  2009年   15篇
  2008年   13篇
  2007年   24篇
  2006年   21篇
  2005年   12篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有365条查询结果,搜索用时 31 毫秒
1.
White Spot Syndrome Virus (WSSV) is a major pathogen in shrimp aquaculture, and its rampant spread has resulted in great economic loss. Identification of host cellular proteins interacting with WSSV will help in unravelling the repertoire of host proteins involved in WSSV infection. In this study, we have employed one-dimensional and two-dimension virus overlay protein binding assay (VOPBA) followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the host proteins of Penaeus monodon that could interact with WSSV. The VOPBA results suggest that WSSV interacted with housekeeping proteins such as heat shock protein 70, ATP synthase subunit β, phosphopyruvate hydratase, allergen Pen m 2, glyceraldehyde-3-phosphate dehydrogenase, sarcoplasmic calcium-binding protein, actin and 14-3-3-like protein. Our findings suggest that WSSV exploits an array of housekeeping proteins for its transmission and propagation in P. monodon.  相似文献   
2.
Sequences homologous to oncogeneyes (Y73/Esh/sarcoma viral oncogene cDNA) in theDrosophila melanogaster Oregon genome were detected byin situ hybridization on salivary gland chromosomes. Three separate sites, 8D/X, 57BC/2R and 95CD/3R, were identified. Presence of sequences highly homologous toyes in the genomic DNA was confirmed by dot blot hybridization under high stringency conditions.  相似文献   
3.
4.
5.
6.
BackgroundThe two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission.ConclusionProkaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His–Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His–Asp–His–Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system''s evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.  相似文献   
7.
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30–300 µg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-κB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   
8.

Background

Chikungunya virus (CHIKV) has reemerged as a life threatening pathogen and caused large epidemics in several countries. So far, no licensed vaccine or effective antivirals are available and the treatment remains symptomatic. In this context, development of effective and safe prophylactics and therapeutics assumes priority.

Methods

We evaluated the efficacy of the siRNAs against ns1 and E2 genes of CHIKV both in vitro and in vivo. Four siRNAs each, targeting the E2 (Chik-1 to Chik-4) and ns1 (Chik-5 to Chik-8) genes were designed and evaluated for efficiency in inhibiting CHIKV growth in vitro and in vivo. Chik-1 and Chik-5 siRNAs were effective in controlling CHIKV replication in vitro as assessed by real time PCR, IFA and plaque assay.

Conclusions

CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection. The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and complete inhibition of virus replication. These findings suggest that RNAi capable of inhibiting CHIKV growth might constitute a new therapeutic strategy for controlling CHIKV infection and transmission.  相似文献   
9.

Using stem and progenitor cells to treat retinal disorders holds great promise. Using defined culture conditions to maintain the desires phenotype is of utmost clinical importance. We cultured human retinal progenitor cells (hRPCs) in different conditions: such as normoxia (20% oxygen), and hypoxia (5% oxygen) with and without knock-out serum replacement (KOSR) to evaluate its effect on these cells. KOSR is known nutrient supplement often used to replace bovine serum for culturing embryonic or pluripotent stem cells, especially those destined for clinical applications. The purpose of this study was to identify the impact of different environmental and chemical cues to determine if this alters the fate of these cells. Our results indicate that cells cultured with or without KOSR do not show significant differences in viability, but that the oxygen tension can significantly change their viability (higher in hypoxia than normoxia). However, cells with KOSR in hypoxia condition expressed significantly higher stemness markers such as C-myc and Oct4 (31.20% and 13.44% respectively) in comparison to hRPCs cultured in KOSR at normoxia (12.07% and 4.05%). Furthermore, levels of markers for retinal commitment such as rhodopsin were significantly lower in the KOSR supplemented cells in hypoxia culture compared to normoxia. KOSR is known to improve proliferation and maintain stemness of embryonic cells and our experiments suggest that hRPCs maintain their proliferation and stemness characteristics in hypoxia with KOSR supplement. Normoxia, however, results in mature cell marker expression, suggesting a profound effect of oxygen tension on these cells.

  相似文献   
10.
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号