首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   7篇
  2023年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有72条查询结果,搜索用时 16 毫秒
1.
The effect of platelet activating factor (PAF) on the induction of early response genes was investigated in A-431 cells (human epidermal carcinoma cells). PAF induced a transient expression of c-fos and TIS-1 mRNA in a time- and dose-dependent manner. As low as 10(-10) M PAF caused detectable expression of these genes with a maximum observed at 10(-7) M. In the presence of cycloheximide, increases in the gene expression were noticeable at 20 min and peaked between 30-60 min. A lack of induction with lyso-PAF, an inactive PAF metabolite, confirmed the specificity of PAF towards this expression. The cells pretreated with CV-6209, a PAF receptor antagonist, did not show any induction of these genes by PAF. It is concluded that PAF causes induction of the early response genes c-fos and TIS-1 in a structurally specific and receptor dependent manner. This finding offers a new role for PAF at the nuclear level and may have important implications in the long term effects of PAF in pathophysiological conditions.  相似文献   
2.
We have studied the displacement of Ca(2+)by the trivalent lanthanide ions (Yb(3+)) in a protozoan (Entamoeba histolytica) Ca(2+)-binding protein (EhCaBP), by NMR and thermodynamics. We have demonstrated, for the first time, how one can use in a combined fashion the utility of NMR and thermodynamics to have an insight to the relative binding specificities/affinity between Ca(2+) and Yb(3+). As revealed by the titration experiments, Yb(3+) displaces Ca(2+) from the four metal binding sites present in EhCaBP in a sequential manner. The study provides a structural origin for such a sequential Ca(2+) displacement by Yb(3+) in EhCaBP.  相似文献   
3.
Mukherjee S  Mohan PM  Chary KV 《Biochemistry》2007,46(12):3835-3845
Calcium binding proteins carry out various signal transduction processes upon binding to Ca2+. In general, these proteins perform their functions in a high background of Mg2+. Here, we report the role of Mg2+ on a calcium sensor protein from Entamoeba histolytica (EhCaBP), containing four Ca2+-binding sites. Mg2+-bound EhCaBP exists as a monomer with a conformation different from that of the holo- and apo-EhCaBP. NMR and biophysical data on EhCaBP demonstrate that Mg2+ stabilizes the closed conformation of the apo form. In the presence of Mg2+, the partially collapsed apo-EhCaBP gains stability and structural integrity. Mg2+ binds to only 3 out of 4 calcium binding sites in EhCaBP. The Ca2+ binding affinity and cooperativity of the conformational switching from the "closed" to the "open" state is significantly modulated by the presence of Mg2+. This fine-tuning of the Ca2+ concentration to switch its conformation is essential for CaBPs to carry out the signal transduction process efficiently.  相似文献   
4.
The aim of this study was to identify a phenolic prodrug compound that is minimally metabolized by rat liver microsomes, but yet could form quinone reactive intermediates in melanoma cells as a result of its bioactivation by tyrosinase. In current work, we investigated 24 phenolic compounds for their metabolism by tyrosinase, rat liver microsomes and their toxicity towards murine B16-F0 and human SK-MEL-28 melanoma cells. A linear correlation was found between toxicities of phenolic analogs towards SK-MEL-28 and B16-F0 melanoma cells, suggesting similar mechanisms of toxicity in both cell lines. 4-HEB was identified as the lead compound. 4-HEB (IC50 48 h, 75 μM) showed selective toxicity towards five melanocytic melanoma cell lines SK-MEL-28, SK-MEL-5, MeWo, B16-F0 and B16-F10, which express functional tyrosinase, compared to four non-melanoma cells lines SW-620, Saos-2, PC3 and BJ cells and two amelanotic SK-MEL-24, C32 cells, which do not express functional tyrosinase. 4-HEB caused significant intracellular GSH depletion, ROS formation, and showed significantly less toxicity to tyrosinase specific shRNA transfected SK-MEL-28 cells. Our findings suggest that presence of a phenolic group in 4-HEB is critical for its selective toxicity towards melanoma cells.  相似文献   
5.
Numerous experimental techniques and computational studies, proposed in recent times, have revolutionized the understanding of protein-folding paradigm. The complete understanding of protein folding and intermediates are of medical relevance, as the aggregation of misfolding proteins underlies various diseases, including some neurodegenerative disorders. Here, we describe the unfolding of M-crystallin, a βγ-crystallin homologue protein from archaea, from its native state to its denatured state using multidimensional NMR and other biophysical techniques. The protein, which was earlier characterized to be a predominantly β-sheet protein in its native state, shows different structural propensities (α and β), under different denaturing conditions. In 2 M GdmCl, the protein starts showing two distinct sets of peaks, with one arising from a partially unfolded state and the other from a completely folded state. The native secondary structural elements start disappearing as the denaturant concentration approaches 4 M. Subsequently, the protein is completely unfolded when the denaturant concentration is 6 M. The 15N relaxation data (T1/T2), heteronuclear 1H-15N Overhauser effects (nOes), NOESY data, and other biophysical data taken together indicate that the protein shows a consistent, gradual change in its structural and motional preferences with increasing GdmCl concentration.  相似文献   
6.
Two-dimensional NMR and molecular dynamics simulations have been used to determine the three-dimensional structures of two hairpin DNA structures: d-CTAGAG GATCCUTTTGGATCCT (abbreviated as U1-hairpin) and d-CTAGAGGATCCTTUTGGATCCT (abbreviated as U3-hairpin). The 1H resonances of both of these hairpin structures have been assigned almost completely. NMR restrained molecular dynamics and energy minimization procedures have been used to describe the three-dimensional structures of these hairpins. This study and concurrent NMR structural studies on two other d-CTAGAGGA TCCTUTTGGATCCT (abbreviated as U2-hairpin) and d-CTAGAGGATCCTTTUGGATCCT (abbreviated as U4-hairpin) have shed light upon various interactions reported between Echerichia coli uracil DNA glycosylase (UDG) and uracil-containing DNA. The backbone torsion angles, which partially influence the local conformation of U12 and U14 in U1 and U3-hairpins, respectively, are probably locked in the trans conformation as in the case of U13 in the U2-hairpin. Such a stretched-out backbone conformation in the vicinity of U12 and U14 is thought to be the reason why the Km value is poor for U1- and U3-hairpins as it is for the U2-hairpin. Furthermore, the bases U12 and U14 in both U1- and U3-hairpins adopt an anti conformation, in contrast with the base conformation of U13 in the U2-hairpin, which adopts a syn conformation. The clear discrepancy observed in the U-base orientation with respect to the sugar moieties could explain why the Vmax value is 10- to 20-fold higher for the U1- and U3-hairpins compared with the U2-hairpin. Taken together, these observations support our interpretation that the unfavourable backbone results in a poor Km value, whereas the unfavourable nucleotide conformation results in a poor Vmax value. These two parameters therefore make the U1- and U3-hairpins better substrates for UDG compared with the U2-hairpin, as reported earlier [Kumar, N. V. & Varshney, U. (1997) Nucleic Acids Res. 25, 2336-2343.].  相似文献   
7.
Tyrosinase and tyrosinase-related proteins (TRPs) are a family of melanosomal membrane proteins involved in mammalian pigmentation. Whereas the melanogenic functions of TRPs are localized in their amino-terminal domains that reside within the lumen of melanosomes, the sorting and targeting of these proteins to melanosomes is mediated by signals in their cytoplasmic domains. To identify proteins that interact with the cytoplasmic tail of gp75 (TRP-1), the most abundant melanosomal membrane protein, we performed yeast two-hybrid screening of a melanocyte cDNA library. Here, we show that the cytoplasmic domain of gp75 interacts with a PDZ domain-containing protein. The gp75-interacting protein is identical to GIPC, an RGS (regulator of G protein signaling)/GAIP-interacting protein, and to SEMCAP-1, a transmembrane semaphorin-binding protein. Carboxyl-terminal amino acid residues, Ser-Val-Val, of gp75 are necessary and sufficient for interaction of gp75 with the single PDZ domain in GIPC. Although endogenous and transfected GIPCs bind efficiently to transiently expressed gp75, only a small amount of GIPC is found associated with gp75 at steady state. Using a strategy to selectively synchronize the biosynthesis of endogenous gp75, we demonstrate that only newly synthesized gp75 associates with GIPC, primarily in the juxtanuclear Golgi region. Our data suggest that GIPC/SEMCAP-1 plays a role in biosynthetic sorting of proteins, specifically gp75, to melanosomes.  相似文献   
8.
Cellular metabolite analyses by 13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2 aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly 13C-labelled acetate (13CH3-COOH or CH3-13COOH) supported that both the 13C nuclei give rise to bicarbonate and CO2 aq. The observed metabolite(s) upon further incubation led to the production of starch and triacylglycerol (TAG) in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2 aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2 aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2 aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.  相似文献   
9.
Mukherjee S  Mohan PM  Kuchroo K  Chary KV 《Biochemistry》2007,46(35):9911-9919
The protein folding energy landscape allows a thorough understanding of the protein folding problem which in turn helps in understanding various aspects of biological functions. Characterizing the cooperative unfolding units and the intermediates along the folding funnel of a protein is a challenging task. In this paper, we investigated the native energy landscape of EhCaBP, a calcium sensor, belonging to the same EF-hand superfamily as calmodulin. EhCaBP is a two-domain EF-hand protein consisting of two EF-hands in each domain and binding to four Ca2+ cations. Native-state hydrogen exchange (HX) was used to assess the folding features of the landscape and also to throw light on the structure-folding function paradigm of calcium sensor proteins. HX measurements under the EX2 regime provided the thermodynamic information about the protein folding events under native conditions. HX studies revealed that the unfolding of EhCaBP is not a two-state process. Instead, it proceeds through cooperative units. The C-terminal domain exhibits less denaturant dependence than the N-terminal domain, suggesting that the former is dominated by local fluctuations. It is interesting to note that the N- and C-terminal domains of EhCaBP have distinct folding features. In fact, these observed differences can regulate the domain-dependent target recognition of two-domain Ca2+ sensor proteins.  相似文献   
10.
Mohan PM  Mukherjee S  Chary KV 《Proteins》2008,70(4):1147-1153
Characterization of near-native excited states of a protein provides insights into various biological functions such as co-operativity, protein-ligand, and protein-protein interactions. In the present study, we investigated the ruggedness of the native state of EhCaBP using nonlinear temperature dependence of backbone amide-proton chemical shifts. EhCaBP is a two-domain EF-hand calcium sensor protein consisting of two EF-hands in each domain and binds four Ca2+ ions. It has been observed that approximately 30% of the residues in the protein access alternative conformations. Theoretical modeling suggested that these low-energy excited states are within 2-3 kcal/mol from the native state. Further, it is interesting to note that the residues accessing alternative conformations are more dominated in the C-terminal domain compared with its N-terminal counterpart suggesting that the former is more rugged in its native state. These distinct characteristics of N- and C-terminal domains of a calcium sensor protein belonging to the super family of calmodulin would have implications for domain dependent Ca2+ signaling pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号