首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2022年   1篇
  2018年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Journal of Plant Biochemistry and Biotechnology - Tea (Camellia sinensis) has enthralled both consumers and researchers, due to its taste, aroma and its medicinal attributes. Tea consumers concern...  相似文献   
2.
The tea industry is significant in the economies of tea-growing countries. Prospects of improving yield of made tea genomic information were explored using clones from a cross between clones TRFCA SFS150 and AHP S15/10. The 42 clones were tested in two distinct tea-growing regions in Kenya. Bulk segregant analysis was performed followed by complete genotyping. Out of 260 informative markers, 100 markers that showed 1:1 segregation were used to construct a linkage map. The map contained 30 (19 maternal and 11 paternal) linkage groups that spanned 1,411.5 cM with mean interval of 14.1 cM between loci. Based on the map, quantitative trait loci (QTL) analysis was done on yield data over 2003–2007 across the two sites, Timbilil and Kangaita. Twenty-three putative QTLs were detected, 16 in five different linkage groups for Timbilil, two in two groups for Kangaita, and the rest were associated with unassigned markers. No QTL was detected at both sites, which showed strong genotype × site interaction (G × E) but highly effective within-site heritability ([^(h)]2 {\hat{h}^2} generally > 0.7). Problems of overestimated and spurious QTL effects arising from the smallness of the population should be mitigated by generally high within-site heritability. At least two unassigned markers associated with yield at Kangaita over the whole study period, suggesting potential as candidate markers for site-specific marker-assisted selections. Implications of the results with respect to mapping population, G × E, and marker-assisted selection are discussed.  相似文献   
3.
Tea (Camellia sinensis) contains polyphenols and caffeine which have been found to be of popular interest in tea quality. Tea production relies on well-distributed rainfall which influence tea quality. Phenotypic data for two segregating tea populations TRFK St 504 and TRFK St 524 were collected and used to identify the quantitative trait loci (QTL) influencing tea biochemical and drought stress traits based on a consensus genetic map constructed using the DArTseq platform. The populations comprised 261 F1 clonal progeny. The map consisted of 15 linkage groups which corresponds to chromosome haploid number of tea plant (2n?=?2×?=?30) and spanned 1260.1 cM with a mean interval of 1.1 cM between markers. A total of 16 phenotypic traits were assessed in the two populations. Both interval and multiple QTL mapping revealed a total of 47 putative QTL in the 15 LGs associated with tea quality and percent relative water content at a significant genome-wide threshold of 5%. In total, six caffeine QTL, 25 catechins QTL, three theaflavins QTL, nine QTL for tea taster score, and three QTL for percent relative water contents were detected. Out of these 47 QTL, 19 QTL were identified for ten traits in three main regions on LG01, LG02, LG04, LG12, LG13, and LG14. The QTL associated with caffeine, individual catechins, and theaflavins were clustered mostly in LG02 and LG04 but in different regions on the map. The explained variance by each QTL in the population ranged from 5.5 to 56.6%, with an average of 9.9%. Identification of QTL that are tightly linked to markers associated with black tea quality coupled with UPLC assay may greatly accelerate development of novel tea cultivars owing to its amenability at seedling stage. In addition, validated molecular markers will contribute greatly to adoption of marker-assisted selection (MAS) for drought tolerance and tea quality improvement.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号