首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2021年   1篇
  2008年   3篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Fusobacterium nucleatum (Fn) is a Gram‐negative oral commensal, prevalent in various human diseases. It is unknown how this common commensal converts to a rampant pathogen. We report that Fn secretes an adhesin (FadA) with amyloid properties via a Fap2‐like autotransporter to enhance its virulence. The extracellular FadA binds Congo Red, Thioflavin‐T, and antibodies raised against human amyloid β42. Fn produces amyloid‐like FadA under stress and disease conditions, but not in healthy sites or tissues. It functions as a scaffold for biofilm formation, confers acid tolerance, and mediates Fn binding to host cells. Furthermore, amyloid‐like FadA induces periodontal bone loss and promotes CRC progression in mice, with virulence attenuated by amyloid‐binding compounds. The uncleaved signal peptide of FadA is required for the formation and stability of mature amyloid FadA fibrils. We propose a model in which hydrophobic signal peptides serve as “hooks” to crosslink neighboring FadA filaments to form a stable amyloid‐like structure. Our study provides a potential mechanistic link between periodontal disease and CRC and suggests anti‐amyloid therapies as possible interventions for Fn‐mediated disease processes.  相似文献   
2.
The H(4)R (histamine H(4) receptor) is the latest identified member of the histamine receptor subfamily of GPCRs (G-protein-coupled receptors) with potential functional implications in inflammatory diseases and cancer. The H(4)R is primarily expressed in eosinophils and mast cells and has the highest homology with the H(3)R. The occurrence of at least twenty different hH(3)R (human H(3)R) isoforms led us to investigate the possible existence of H(4)R splice variants. In the present paper, we report on the cloning of the first two alternatively spliced H(4)R isoforms from CD34+ cord blood-cell-derived eosinophils and mast cells. These H(4)R splice variants are localized predominantly intracellularly when expressed recombinantly in mammalian cells. We failed to detect any ligand binding, H(4)R-ligand induced signalling or constitutive activity for these H(4)R splice variants. However, when co-expressed with full-length H(4)R [H(4)R((390)) (H(4)R isoform of 390 amino acids)], the H(4)R splice variants have a dominant negative effect on the surface expression of H(4)R((390)). We detected H(4)R((390))-H(4)R splice variant hetero-oligomers by employing both biochemical (immunoprecipitation and cell-surface labelling) and biophysical [time-resolved FRET (fluorescence resonance energy transfer)] techniques. mRNAs encoding the H(4)R splice variants were detected in various cell types and expressed at similar levels to the full-length H(4)R((390)) mRNA in, for example, pre-monocytes. We conclude that the H(4)R splice variants described here have a dominant negative effect on H(4)R((390)) functionality, as they are able to retain H(4)R((390)) intracellularly and inactivate a population of H(4)R((390)), presumably via hetero-oligomerization.  相似文献   
3.
The human histamine H1 Receptor (hH1R) belongs to the family of G-protein coupled receptors (GPCRs), an attractive and proven class of drug targets in a wide range of therapeutic areas. However, due to the low amount of available purified protein and the hydrophobic nature of GPCRs, limited structural information is available on ligand-receptor interaction especially for the transmembrane (TM) domain regions where the majority of ligand-receptor interactions occur. During the last decades, proteomic techniques have increasingly become an important tool to reveal detailed information on the individual GPCR class, including post-translational modifications and characterizations of GPCRs binding pocket. Herein, we report the successful functional production and mass spectrometric characterization of the hH1R, after baculovirus-driven and in vitro cell-free expression. Using only MALDI-ToF, sequence coverage of more than 80%, including five hydrophobic TM domains was achieved. Moreover, we have identified an asparagine residue in the hH1R protein that is subject to N-linked glycosylation. This information would be valuable for drug discovery efforts by allowing us to further study H1R-ligand interactions using histaminergic ligands that covalently bind the hH1R, and eventually revealing binding sites of hH1R and other GPCRs.  相似文献   
4.
In the first of this three paper series, an in vitro latex coagulation was shown to arise from aggregation of rubber particles (RP) and lutoid membranes. RP aggregation was shown to be induced by a specific Hevea latex lectin-like protein (HLL) present on the lutoid membrane. In this second paper, a binding protein (BP) ligand counterpart for HLL was identified. This RP-HLLBP, having a specific interaction, with HLL was isolated from RP and characterized. The protein was extracted from the small RP in the presence of a surfactant (0.2% Triton-X-100) and further purified to homogeneity. Purification steps included acetone precipitation, heat-treatment, and column chromatography. The presence of RP-HLLBP was monitored by its ability to compete with erythrocytes in the hemagglutination inhibition (HI) assay. The purified RP-HLLBP had an HI titre of 1.37 microgml(-1), a pI value of 5.4, optimum activity at pH 5-8 and was thermostable up to 60 degrees C. On SDS-PAGE a single glycoprotein with M(r) of 24 kDa was detected while on native PAGE the major Mr was about 120 kDa. The purified RP-HLLBP was shown to inhibit latex coagulation. Chitinase, but no other glycosidase tested, abolished its HI action and inhibited HLL-induced RP aggregation in a competitive dose dependent manner. This indicated the presence of, and role for, N-acetylglucosamine residues in the binding recognition. The Hevea latex lectin-like protein can thus be referred to as a Hevea latex lectin. Based on protein identification by peptide mass fingerprinting, the RP-HLLBP was confirmed to be the small rubber particle protein (SRPP). This work has unambiguously determined the role of an intrinsic RP glycoprotein (RP-HLLBP or SRPP) as a key component in formation of the rubber latex coagulum.  相似文献   
5.
Phylloquinone (Vitamin K(1)) is an essential component of the photosynthetic electron transfer. As isochorismate is required for the biosynthesis of Vitamin K(1), isochorismate synthase (ICS) activity is expected to be present in all green plants. In bacteria salicylic acid (SA) is synthesized via a two step pathway involving ICS and isochorismate pyruvate lyase (IPL). The effect of the introduction in tobacco plants of the bacterial ICS and IPL genes on the endogenous isochorismate pathway was investigated. Transgenic tobacco plants in which IPL was targeted to the chloroplast suffered severe growth retardation and had low Vitamin K(1) content. Probably because isochorismate was channeled towards SA production, the plants were no longer able to produce normal levels of Vitamin K(1). Transgenic tobacco plants in which the bacterial ICS was present in the chloroplast showed higher Vitamin K(1) contents than wild type plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号