首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  1998年   1篇
  1991年   1篇
  1988年   1篇
  1984年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
In order to evaluate the effects of the aldose reductase inhibitor, ONO-2235, on the short-term response of human erythrocyte sorbitol to hyperglycemia in vivo, eleven diet-treated Type 2 (non-insulin-dependent) diabetic patients were studied twice in 75 g oral glucose tolerance tests - with and without ONO-2235 (200 mg p.o.) premedication. The erythrocyte sorbitol concentrations increased with the increments of blood glucose and erythrocyte glucose concentrations in the test performed without ONO-2235. The erythrocyte sorbitol response in the test performed with administration of ONO-2235 30 min prior to glucose load was lower than that in the test performed without ONO-2235 (F = 5.782, P less than 0.05). No significant differences were found between the two tests in blood glucose and erythrocyte glucose concentrations (F = 0.092, P = 0.761; F = 0.029, P = 0.860, respectively). It is concluded that human erythrocyte sorbitol concentrations change promptly in response to rapid changes in erythrocyte glucose concentrations and that administered ONO-2235 is effective in inhibiting the human erythrocyte sorbitol pathway in man.  相似文献   
2.
Disruption of adiponectin causes insulin resistance and neointimal formation   总被引:110,自引:0,他引:110  
The adipocyte-derived hormone adiponectin has been proposed to play important roles in the regulation of energy homeostasis and insulin sensitivity, and it has been reported to exhibit putative antiatherogenic properties in vitro. In this study we generated adiponectin-deficient mice to directly investigate whether adiponectin has a physiological protective role against diabetes and atherosclerosis in vivo. Heterozygous adiponectin-deficient (adipo(+/-)) mice showed mild insulin resistance, while homozygous adiponectin-deficient (adipo(-/-)) mice showed moderate insulin resistance with glucose intolerance despite body weight gain similar to that of wild-type mice. Moreover, adipo(-/-) mice showed 2-fold more neointimal formation in response to external vascular cuff injury than wild-type mice (p = 0.01). This study provides the first direct evidence that adiponectin plays a protective role against insulin resistance and atherosclerosis in vivo.  相似文献   
3.
4.

Background

Adult neurogenesis occurs in specific regions of the mammalian brain such as the dentate gyrus of the hippocampus. In the neurogenic region, neural progenitor cells continuously divide and give birth to new neurons. Although biological properties of neurons and glia in the hippocampus have been demonstrated to fluctuate depending on specific times of the day, it is unclear if neural progenitors and neurogenesis in the adult brain are temporally controlled within the day.

Methodology/Principal Findings

Here we demonstrate that in the dentate gyrus of the adult mouse hippocampus, the number of M-phase cells shows a day/night variation throughout the day, with a significant increase during the nighttime. The M-phase cell number is constant throughout the day in the subventricular zone of the forebrain, another site of adult neurogenesis, indicating the daily rhythm of progenitor mitosis is region-specific. Importantly, the nighttime enhancement of hippocampal progenitor mitosis is accompanied by a nighttime increase of newborn neurons.

Conclusions/Significance

These results indicate that neurogenesis in the adult hippocampus occurs in a time-of-day-dependent fashion, which may dictate daily modifications of dentate gyrus physiology.  相似文献   
5.
Six essentially hypertensive men (average resting arterial pressure of 150/97 mm Hg) and eight normotensive controls (average resting arterial pressure of 115/73 mm Hg) were tested during 1 h of dynamic leg exercise in a warm environment. The groups were well matched for age, VO2 max, body surface area, weight, and body fat. Environmental conditions were 38 degrees C dry-bulb, 28 degrees C wet-bulb; exercise intensity was approximately 40% VO2 max (85-90 W). There were no significant intergroup differences in core or mean skin temperatures, calculated heat exchange variables, heart, or sweat rates. Blood pressure differences between the groups were maintained (P less than 0.01). The hypertensive group responded with a significantly lower stroke index (P less than 0.01) and cardiac index (P less than 0.01), and a decreased slope of the rise in forearm blood flow (P less than 0.01) due to an higher vascular resistance (P less than 0.01). The combined heat load (M + R + C) presented was not sufficient to override the hypertensives' higher cutaneous vasoconstrictor tone. However, on a practical basis, the hypertensives were able to tolerate exercise in the heat as well as their normotensive counterparts.  相似文献   
6.
7.
8.
Arachidonic acid (AA) at 0.2 mM enhances glucose uptake through increased levels of glucose transporter (GLUT) 1 protein in 3T3-L1 adipocytes. Since AA is a precursor of prostaglandins (PGs), we investigated the effect of PGs on glucose consumption in 3T3-L1 cells. Among several PGs, only prostaglandin F(2)alpha (PGF(2)alpha) enhanced glucose consumption in 3T3-L1 cells treated with dexamethasone (DEX), 3-isobutyl-1-methyl-xanthine (IBMX), and insulin. To study the mechanism of PGF(2)alpha-enhanced glucose consumption, we investigated the effect of PGF(2)alpha on glycerol-3-phosphate dehydrogenase (GPDH) activity, triglycerides (TGs) content, and the expression of GLUT1 protein. PGF(2)alpha suppressed GPDH activity and did not increase the expression of GLUT1 protein in 3T3-L1 cells treated with DEX, IBMX, and insulin. These results suggest that AA-stimulated glucose uptake is not through the effect of PGF(2)alpha. Our results indicate that PGF(2)alpha is a unique regulator of adipocyte differentiation (suppression) and glucose consumption (enhancement) in 3T3-L1 cells.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号