首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  15篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150mg l(-1) Fe2+ +Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H-1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 micromol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses.  相似文献   
2.
Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific‐glucose‐uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters.  相似文献   
3.
1. The ability of roach to use cyanobacterial food is generally believed to be one reason for the dominance of roach over perch in eutrophic European lakes. The aim of this study was to test whether cyanobacteria really are a suitable food for juvenile roach. Special attention was paid to differences between the two cyanobacteria species Aphanizomenon and Microcystis which are common in eutrophic lakes and are ingested by roach there.
2. We performed growth and behaviour experiments with juvenile roach fed with zooplankton and the different cyanobacteria. Growth rate with Aphanizomenon was lower than with Daphnia but significantly higher than without food, whereas growth rate with Microcystis was as low as without food.
3. In cultivation experiments of roach faeces, Microcystis was found not to have been digested and grew exponentially after passing through the gut whereas Aphanizomenon stayed at low biomass. Differences in growth were not related to the toxin content of cyanobacteria. Investigations of roach motility showed no differences whether fed with Aphanizomenon or Microcystis .
4. In contrast to Microcystis , Aphanizomenon can be regarded as a suitable food source for juvenile roach probably because of its better digestability. We conclude that the ability to feed on cyanobacteria is not a general competitive advantage for roach, but the outcome depends on the species composition of the cyanobacteria.  相似文献   
4.
High Heterotrophic Bacterial Production in Acidic, Iron-Rich Mining Lakes   总被引:1,自引:0,他引:1  
The acidic mining lakes of Eastern Germany are characterized by their extremely low pH and high iron concentrations. Low concentrations of CO2 in the epilimnion due to the low pH and reduced light transmission due to dissolved ferric iron potentially limit phytoplankton primary production (PP), whereas dissolved organic carbon (DOC) may promote heterotrophic production of bacteria (HP). We, therefore, tested whether HP exceeds PP in three lakes differing in pH and iron concentration (mean pH 2.3–3.0, 23–500 mg Fe L−1). Bacterial biomass and HP achieved highest values in the most acidic, most iron-rich lake, whereas PP was highest in the least acidic lake. HP was often higher than PP (ratio HP/PP up to 11), indicating that planktonic PP was not the main carbon source for the bacteria. HP was not related to PP and DOC, but HP as well as bacterial biomass increased with decreasing pH. Light stimulated the formation of ferrous iron, changed the DOC composition, and increased the HP in laboratory experiments, suggesting that iron photoreduction caused DOC degradation. This may explain why we found the highest HP in the most acidic and most rich lake. Overall, the importance of bacteria in the cycling of matter and as a basis for the whole food web seemed to increase in more acidic lakes with higher iron concentrations.  相似文献   
5.
To test the consequences of decreased diversity and exclusionof keystone species, we compared the planktonic food webs intwo acidic (pH  相似文献   
6.
It is now widely accepted that many surface waters receive more terrestrial carbon than assumed in the past, and that aquatic food webs are largely based on the supply of external dissolved organic carbon. However, very little information is available on how efficiently external carbon is utilized by microorganisms and transported to consumers of higher trophic levels. To address this issue, we prepared and tested polymers of 14C-p-coumaric acid (PCA) as a model substrate for terrestrial organic carbon. Photodegradation products that can be considered potential substrates for microorganisms were identified using hyphenated techniques, including gas chromatography-mass spectrometry (GC/MS) and ion chromatography-electrospray ionization mass spectrometry (IC/MS). Photolysis of PCA released monomeric phenol derivatives, e.g. 4-hydroxybenzaldehyde. The photolysis products observed were similar to those characteristic for natural organic carbon. Both a heterotrophic bacteria assemblage and a cultured algae strain exhibiting heterotrophic capabilities proved capable of utilizing the model substrate. Irradiation of PCA increased the uptake rate approximately eight times for the bacteria, but no significant increase was observed for the algae. Potential sources of interferences, e.g. the uptake of 14CO2 released by photolysis, were addressed. It was concluded that PCA is a suitable substrate to study the metabolism of terrestrial DOC within aquatic communities.  相似文献   
7.
Algae of various taxonomic groups are capable of assimilating dissolved organic carbon (DOC) from their environments (mixotrophy). Recently, we reported that, with increasing biomass of mixotrophs, heterotrophic bacteria did not increase. We hypothesized that algal uptake of external DOC may outweigh their release of DOC by exudation (H1). Here, we addressed an alternative hypothesis that algae did not assimilate external DOC but constrained the release of DOC (H2). In chemostat experiments, we cultured the mixotrophic Chlamydomonas acidophila Negoro together with heterotrophic bacteria. As external substrates, we used glucose, which was potentially available for both bacteria and algae, or fructose, which was available only for bacteria. We increased the biomass of algae by the stepwise addition of phosphorus. Bacterial biomass did not increase in experiments using glucose or when fructose was offered, suggesting that mechanisms other than algal mixotrophy (H1) kept concentrations of bacteria low. Measured exudation rates (percent extracellular release, PER) of mixotrophic algae (Cd. acidophila, Chlorella protothecoides W. Krüger) were very low and ranged between 1.0% and 3.5% at low and moderately high phosphorus concentrations. In contrast, an obligately phototrophic alga (Chlamydomonas segnis H. Ettl) showed higher exudation rates, particularly under phosphorus limitation (70%). The results support H2. If mixotrophy is considered as a mechanism to recycle organic exudates from near the cell surface, this would explain why algae retained mixotrophic capabilities although they cannot compete with bacteria for external organic carbon.  相似文献   
8.
As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH—even at low pH—and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.  相似文献   
9.
Bacterivory by mixotrophic flagellates may contribute to theirnutrient supply, providing a competitive advantage in oligotrophicwaters. We hypothesized an increase in Dinobryon biomass duringthe re-oligotrophication process in the large and deep LakeConstance. To estimate whether bacterivory contributed substantiallyto the flagellates’ phosphorus supply, we determined ingestionrates. Dinobryon biomass increased with decreasing total phosphorusconcentrations in the lake over a period of 17 years (P = 0.0005).The promotion of Dinobryon biomass during re-oligotrophicationmay be explained by the increasing light availability due tothe decreasing biomass of other phytoplankton yielding a releasefrom competition. The date of the Dinobryon abundance maximumshifted to earlier time points in the year, probably becausea smaller phosphorus pool was depleted more quickly. Ingestionrates of Dinobryon ranged between 0.5 and 13 bacteria cell–1h–1 (0.2–5.4 fg C pg C–1 h–1), and clearancerates varied between 0.2 and 3.2 nL cell–1 h–1 (4–78pL pg C–1 h–1), leading to bacterial losses of upto 30% day–1 of bacterial standing stock. The ingestionof bacteria covered 77% of the phosphorus need of the flagellateduring the period of maximum growth in 1996 (net growth rate0.34 day–1), and it fully covered the need at all othertimes.  相似文献   
10.
1. After observing that juvenile roach fed intensively on cyanobacteria and that cyanobacteria were densely colonized by heterotrophic bacteria, we tested whether the bacteria are used by underyearling roach and the extent to which they contribute to the energy requirements of the fish.
2. We radiolabelled attached bacteria in a natural cyanobacterial suspension, fed the fish with these particles, and estimated their assimilation by roach. Biomass of attached bacteria on cyanobacteria increased with the proportion of the cyanobacterium Microcystis in total cyanobacteria. Biomass-specific thymidine incorporation of attached bacteria was higher than that of free bacteria.
3. In feeding experiments, we detected assimilation of bacterial biomass into muscle tissue of underyearling roach. Fish consumed Microcystis to a lesser extent compared with Aphanizomenon but assimilation of attached bacteria was higher when roach fed on Microcystis because of the higher biomass of epibacteria on this cyanobacterium. However, biomass of attached bacteria was too low to be an important food source for underyearling roach.
4. We conclude that assimilation of epibacteria from cyanobacteria cannot explain the success of roach in eutrophic lakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号