首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2011年   8篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  1998年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Epoxyeicosatrienoic acids (EETs) are endothelium-derived eicosanoids that activate potassium channels, hyperpolarize the membrane, and cause relaxation. We tested 19 analogs of 14,15-EET on vascular tone to determine the structural features required for activity. 14,15-EET relaxed bovine coronary arterial rings in a concentration-related manner (ED(50) = 10(-6) M). Changing the carboxyl to an alcohol eliminated dilator activity, whereas 14,15-EET-methyl ester and 14,15-EET-methylsulfonimide retained full activity. Shortening the distance between the carboxyl and epoxy groups reduced the agonist potency and activity. Removal of all three double bonds decreased potency. An analog with a Delta8 double bond had full activity and potency. However, the analogs with only a Delta5 or Delta11 double bond had reduced potency. Conversion of the epoxy oxygen to a sulfur or nitrogen resulted in loss of activity. 14(S),15(R)-EET was more potent than 14(R),15(S)-EET, and 14,15-(cis)-EET was more potent than 14,15-(trans)-EET. These studies indicate that the structural features of 14,15-EET required for relaxation of the bovine coronary artery include a carbon-1 acidic group, a Delta8 double bond, and a 14(S),15(R)-(cis)-epoxy group.  相似文献   
2.
The extracellular enzyme alginate lyase produced from marine fungus Aspergillus oryzae isolated from brown alga Dictyota dichotoma was purified, partially characterized, and evaluated for its sodium alginate depolymerization abilities. The enzyme characterization studies have revealed that alginate lyase consisted of two polypeptides with about 45 and 50 kDa each on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and showed 140-fold higher activity than crude enzyme under optimized pH (6.5) and temperature (35°C) conditions. Zn2+, Mn2+, Cu2+, Mg2+, Co2+ and NaCl were found to enhance the enzyme activity while (Ca2+, Cd2+, Fe2+, Hg2+, Sr2+, Ni2+), glutathione, and metal chelators (ethylenediaminetetraacetic acid and ethylene glycol tetraacetic acid) suppressed the activity. Fourier transform infrared and thin-layer chromatography analysis of depolymerized sodium alginate indicated the enzyme specificity for cleaving at the β-1,4 glycosidic bond between polyM and polyG blocks of sodium alginate and therefore resulted in estimation of relatively higher polyM content than polyG. Comparison of chemical shifts in 13C nuclear magnetic resonance spectra of both polyM and polyG from that of sodium alginate also showed further evidence for enzymatic depolymerization of sodium alginate.  相似文献   
3.
Gracilaria edulis, G. crassa, G. foliifera, and G. corticata are naturally occurring agarophytes of Indian waters. These agarophytes were evaluated for their agar contents using an improved process recently reported by us (US Patent 2005/0267296A1). The effect of different concentrations of NaOH in the alkali treatment was studied for optimizing the extraction conditions. These Gracilaria species of Indian waters produced agars, both native and alkali treated, with different properties confirming the heterogeneity of the agar polymers in this genera, as one would expect. Among these, G. edulis and G. crassa produced agar polymers having high gel strengths of 490 ± 8.16 and 800 ± 15.4 g cm−2, respectively, with 8% NaOH treatment as opposed the low gel strength agars that have been reported in the literature to date.  相似文献   
4.
The effects of rapid eye movement sleep restriction (REMSR) in rats during late pregnancy were studied on the ultrasonic vocalizations (USVs) made by the pups. USVs are distress calls inaudible to human ears. Rapid eye movement (REM) sleep was restricted in one group of pregnant rats for 22 hours, starting from gestational day 14 to 20, using standard single platform method. The USVs of male pups were recorded after a brief isolation from their mother for two minutes on alternate post-natal days, from day one till weaning. The USVs were recorded using microphones and were analysed qualitatively and quantitatively using SASPro software. Control pups produced maximum vocalization on post-natal days 9 to 11. In comparison, the pups born to REMSR mothers showed not only a reduction in vocalization but also a delay in peak call making days. The experimental group showed variations in the types and characteristics of call types, and alteration in temporal profile. The blunting of distress call making response in these pups indicates that maternal sleep plays a role in regulating the neural development involved in vocalizations and possibly in shaping the emotional behaviour in neonates. It is suggested that the reduced ultrasonic vocalizations can be utilized as a reliable early marker for affective state in rat pups. Such impaired vocalization responses could provide an important lead in understanding mother-child bonding for an optimal cognitive development during post-partum life. This is the first report showing a potential link between maternal REM sleep deprivation and the vocalization in neonates and infants.  相似文献   
5.
Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).  相似文献   
6.
This paper reports the formation of weak gel of chitin with an ionic liquid, 1-allyl-3-methylimidazolium bromide (IL). When a mixture of 5% (w/w) chitin with IL was heated at 100 °C for 48 h, the clear liquid was obtained. The experimental process was observed by the CCD camera view and the SEM analysis. From a mixture of chitin with IL in the higher concentration (7%, w/w), a more viscous material, i.e., a gel-like material was obtained. The rheological evaluations showed that both 5% (w/w) and 7% (w/w) chitins with IL behaved as weak gels.  相似文献   
7.
Human 17beta-hydroxysteroid dehydrogenases (17betaHSDs) catalyze the interconversion of weak and potent androgen and estrogen pairs. Although the reactions using purified enzymes can be driven in either direction, these enzymes appear to function unidirectionally in intact cells: only reductive reactions for 17betaHSD1 and 17beta HSD3 and only oxidative reactions for 17betaHSD2. We show that, after exhaustive incubations with either 17beta-hydroxy- or 17-ketosteroid, the medium for HEK-293 cells expressing 17betaHSD1 or 17betaHSD3 contains a 92:8 ratio of reduced:oxidized steroid. Similarly, 17betaHSD2 yields a >95:5 ratio of oxidized:reduced steroids for both androgens and estrogens. Dual-isotope kinetic measurements show that the rates of the forward and reverse reactions are identical at these functional equilibrium states in intact cells for all three 17betaHSD isoforms, and these rates are much faster than those estimated from single-isotope flux studies. Mutation L36D converts 17betaHSD1 to an oxidative enzyme in intact cells, reversing the equilibrium distribution of estradiol:estrone to 5:95; however, the rates of the forward and reverse reactions at equilibrium are equal and comparable to those of the wild-type enzymes. The co-expression of 17betaHSD2 paradoxically increases the potency of estrone in transactivation assays, demonstrating the physiological relevance of "backwards" metabolism to estradiol. We conclude that 17betaHSD types 1, 2, and 3 catalyze both oxidative and reductive reactions in HEK-293 cells at intrinsic rates that are much faster than those estimated from single-isotope studies. These 17betaHSD isoforms do not drive steroid flux in one direction but rather may achieve functional equilibria in intact cells, reflecting thermodynamically driven steroid distributions.  相似文献   
8.
Hollow fiber membranes and chromatographic resin beads are commonly employed in a variety of bioseparation processes. A new class of integrated separation devices is being studied in which the shell side of a hollow fiber device is filled with adsorbents/chromatographic resin beads. Such devices and the corresponding separation methods integrate feed broth clarification by the microfiltration/ultrafiltration membrane with bioproduct purification by the shell-side resin beads either as an adsorbent or as beads in elution chromatography. A mathematical model has been developed for the prediction of the chromatographic behavior of such an integrated device. Simulations have been done to study the effects of axial dispersion, feed flow rate, water permeation rate, fiber packing density, and void fraction. Numerical solutions were obtained by solving the governing equations. This model can reasonably describe the concentration profiles as well as the breakthrough and elution behaviors in the integrated device.  相似文献   
9.
10.
Mizrachi D  Wang Z  Sharma KK  Gupta MK  Xu K  Dwyer CR  Auchus RJ 《Biochemistry》2011,50(19):3968-3974
Human cytochrome P450c21 (steroid 21-hydroxylase, CYP21A2) catalyzes the 21-hydroxylation of progesterone (P4) and its preferred substrate 17α-hydroxyprogestrone (17OHP4). CYP21A2 activities, which are required for cortisol and aldosterone biosynthesis, involve the formation of energetically disfavored primary carbon radicals. Therefore, we hypothesized that the binding of P4 and 17OHP4 to CYP21A2 restricts access of the reactive heme-oxygen complex to the C-21 hydrogen atoms, suppressing oxygenation at kinetically more favorable sites such as C-17 and C-16, which are both hydroxylated by cytochrome P450c17 (CYP17A1). We reasoned that expansion of the CYP21A2 substrate-binding pocket would increase substrate mobility and might yield additional hydroxylation activities. We built a computer model of CYP21A2 based principally on the crystal structure of CYP2C5, which also 21-hydroxylates P4. Molecular dynamics simulations indicate that binding of the steroid nucleus perpendicular to the plane of the CYP21A2 heme ring limits access of the heme oxygen to the C-21 hydrogen atoms. Residues L107, L109, V470, I471, and V359 were found to contribute to the CYP21A2 substate-binding pocket. Mutation of V470 and I471 to alanine or glycine preserved P4 21-hydroxylase activity, and mutations of L107 or L109 were inactive. Mutations V359A and V359G, in contrast, acquired 16α-hydroxylase activity, accounting for 40% and 90% of the P4 metabolites, respectively. We conclude that P4 binds to CYP21A2 in a fundamentally different orientation than to CYP17A1 and that expansion of the CYP21A2 substrate-binding pocket allows additional substrate trajectories and metabolic switching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号