首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   65篇
  2022年   8篇
  2021年   14篇
  2020年   14篇
  2019年   8篇
  2018年   11篇
  2017年   4篇
  2016年   13篇
  2015年   15篇
  2014年   25篇
  2013年   28篇
  2012年   45篇
  2011年   44篇
  2010年   28篇
  2009年   23篇
  2008年   32篇
  2007年   32篇
  2006年   33篇
  2005年   38篇
  2004年   31篇
  2003年   39篇
  2002年   35篇
  2001年   16篇
  2000年   16篇
  1999年   20篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   11篇
  1990年   14篇
  1989年   11篇
  1988年   10篇
  1987年   8篇
  1986年   13篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   3篇
  1978年   6篇
  1975年   5篇
  1974年   2篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1965年   3篇
排序方式: 共有751条查询结果,搜索用时 288 毫秒
1.
Summary Hydrogen is consumed by methanogenic, sulphate-reducing, and homoacetogenic bacteria and members of these bacterial groups are able to grow chemolithotrophically with hydrogen as sole energy source. Cathodic hydrogen consumption by sulphate-reducing bacteria has been proposed as one of the factors in the anaerobic corrosion of metals. Desulfovibrio spp. were able to utilize cathodic hydrogen from mild steel as the only source of energy for growth with sulphate or nitrate as terminal electron acceptor. Other hydrogen-oxidizing bacteria such as Methanospirillum hungatei, Acetobacterium woodii and Wolinella succinogenes were also able to utilize cathodic hydrogen from mild steel for energy generation and growth. Weight loss studies of mild steel coupons under different growth conditions of Desulfovibrio spp. indicated that hydrogen removal alone is not the cause of corrosion and the depolarization phenomenon probably plays a role only in the initiation of the anaerobic microbial corrosion process.  相似文献   
2.
The use of the potent antitumor antibiotic doxorubicin (DOX) is hampered because of its severe cardiac toxicity that leads to the development of cardiomyopathy and heart failure. In this study, we have developed a cell culture model for DOX-induced myocardial injury using primary adult rat cardiomyocytes that were cultured in serum-free medium and exposed to 1 to 40 microM DOX. DOX caused a dose-dependent release of sarcosolic enzyme lactate dehydrogenase (LDH) from cultured myocytes. The release of LDH was prevented by the cell-permeable superoxide dismutase (SOD) mimetic (MnTBAP), but was unaffected by either cell-impermeable SOD enzyme, or manganese (II) sulfate. Ebselen, a glutathione peroxidase (GPx) mimetic, enhanced the protection of cardiomyocytes afforded by MnTBAP. DOX caused the increased formation of oxidants in cardiomyocytes, and MnTBAP lowered the amount of intracellular oxidants induced by DOX. In addition, DOX selectively inactivated aconitase in cardiomyocytes, and MnTBAP partially reversed this inactivation. Ebselen further amplified the protective effect of MnTBAP on aconitase activity. These results suggest that the SOD mimetic MnTBAP prevents DOX-induced damage to cardiomyocytes and that the GPx mimetic ebselen synergistically enhanced the cardioprotection afforded by MnTBAP. Relevance of these findings to minimizing cardiotoxicity in cancer treatment is discussed.  相似文献   
3.
Lignin peroxidase oxidizes non-phenolic substrates by one electron to give aryl-cation-radical intermediates, which react further to give a variety of products. The present study investigated the possibility that other peroxidative and oxidative enzymes known to catalyse one-electron oxidations may also oxidize non-phenolics to cation-radical intermediates and that this ability is related to the redox potential of the substrate. Lignin peroxidase from the fungus Phanerochaete chrysosporium, horseradish peroxidase (HRP) and laccase from the fungus Trametes versicolor were chosen for investigation with methoxybenzenes as a homologous series of substrates. The twelve methoxybenzene congeners have known half-wave potentials that differ by as much as approximately 1 V. Lignin peroxidase oxidized the ten with the lowest half-wave potentials, whereas HRP oxidized the four lowest and laccase oxidized only 1,2,4,5-tetramethoxybenzene, the lowest. E.s.r. spectroscopy showed that this congener is oxidized to its cation radical by all three enzymes. Oxidation in each case gave the same products: 2,5-dimethoxy-p-benzoquinone and 4,5-dimethoxy-o-benzoquinone, in a 4:1 ratio, plus 2 mol of methanol for each 1 mol of substrate. Using HRP-catalysed oxidation, we showed that the quinone oxygen atoms are derived from water. We conclude that the three enzymes affect their substrates similarly, and that whether an aromatic compound is a substrate depends in large part on its redox potential. Furthermore, oxidized lignin peroxidase is clearly a stronger oxidant than oxidized HRP or laccase. Determination of the enzyme kinetic parameters for the methoxybenzene oxidations demonstrated further differences among the enzymes.  相似文献   
4.
Phanerochete chrysosporium ligninase (+ H2O2) oxidized the lignin substructure-related compound acetosyringone to a phenoxy radical which was identified by ESR spectroscopy. Cellobiose:quinone oxidoreductase (CBQase) + cellobiose, previously suggested to be a phenoxy radical reducing system, was without effect on the radical. Ligninase polymerized guaiacol and it increased the molecular size of a synthetic lignin. These polymerizations, reflecting phenoxy radical coupling reactions, were also unaffected by the CBQase system. We conclude that ligninase catalyzes phenol polymerization via phenoxy radicals, which CBQase does not affect. The CBQase system also did not produce H2O2, and its physiological role remains obscure. Glucose oxidase + glucose did produce H2O2 as expected, but, like CBQase, it did not reduce the phenoxy radical of acetosyringone. Because intact cultures of P. chrysosporium depolymerize lignins, it is likely that phenol polymerization by ligninase is prevented or reversed in vivo by an as yet undescribed system.  相似文献   
5.
Polyclonal B-cell activation is a characteristic feature of AIDS and of the AIDS-related complex. Since the immunoregulatory cytokine interleukin-6 (IL-6) plays a major role in inducing B-cell differentiation, we examined the effects of native human immunodeficiency virus type 1 envelope glycoproteins gp120 and gp160 on IL-6 induction. In this study, we have demonstrated that both gp120 and gp160 have the ability to induce IL-6 mRNA and biologically active IL-6 protein secretion in peripheral blood mononuclear cells in vitro. The envelope protein preparations had no detectable endotoxin as tested by the Limulus amebocyte lysate assay, and hence we can rule out the effect of contaminating endotoxin, which is a potent inducer of IL-6 in monocyte/macrophage cell cultures. In addition, we have shown that the envelope glycoproteins act directly on CD4(+)-cloned T cells to induce IL-6 production in the absence of monocytes. These findings indicate that monocytes and T cells both contribute to the secretion of IL-6, which plays an important role in the pathogenesis of B-cell activation in human immunodeficiency virus infection.  相似文献   
6.
Oxidase electrode measurements as well as optical and electron spin resonance spectroscopic data have shown that synthetic neuromelanin oxidizes the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium in a dose-dependent manner forming 1-methyl-4-phenylpyridinium and hydrogen peroxide. Hydroxyl radicals are formed in this reaction which is promoted by iron chelates. In contrast, neither 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine nor 1-methyl-4-phenylpyridinium reacts with synthetic neuromelanin in a similar fashion. The mechanism of selective toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in pigmented neuronal cells is discussed in the light of these findings.  相似文献   
7.
Recombination between HIV DNAs was analyzed using DNA transfection in cell cultures and the optimal conditions for efficient recombination were determined. Recombinant plasmid DNA substrates were constructed from HIV proviral DNAs and the success of recombination was measured by the production of viable hybrid virus. The process of recombination between HIV DNAs was shown to be i) dependent on homology between the truncated HIV DNAs and ii) maximum with concentrations of the truncated DNAs 3ug and above. HIV isolates with heterogeneity in their primary sequence, thus offer an ideal system for the analysis of the requirement of homologous recombination. In addition, recombination methodology would be useful for generating hybrid HIVs for the analysis of specific viral gene functions.  相似文献   
8.
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source.  相似文献   
9.
10.
This study examined the ligninase-catalysed degradation of lignin model compounds representing the arylglycerol beta-aryl ether substructure, which is the dominant one in the lignin polymer. Three dimeric model compounds were used, all methoxylated in the 3- and 4-positions of the arylglycerol ring (ring A) and having various substituents in the beta-ether-linked aromatic ring (ring B), so that competing reactions involving both rings could be compared. Studies of the products formed and the time courses of their formation showed that these model compounds are oxidized by ligninase (+ H2O2 + O2) in both ring A and ring B. The major consequence with all three model compounds is oxidation of ring A, leading primarily to cleavage between C(alpha) and C(beta) (C(alpha) being proximal to ring A), and to a lesser extent to the oxidation of the C(alpha)-hydroxy group to a carbonyl group. Such C(alpha)-oxidation deactivates ring A, leaving only ring B for attack. Studies with C(alpha)-carbonyl model compounds corresponding to the three basic model compounds revealed that oxidation of ring B leads in part to dealkoxylations (i.e. to cleavage of the glycerol beta-aryl ether bond and to demethoxylations), but that these are minor reactions in the model compounds most closely related to lignin. Evidence is also given that another consequence of oxidation of ring B in the C(alpha)-carbonyl model compounds is formation of unstable cyclohexadienone ketals, which can decompose with elimination of the beta-ether-linked aromatic ring. The mechanisms proposed for the observed reactions involve initial formation of aryl cation radicals in either ring A or ring B. The cation radical intermediate from one of the C(alpha)-carbonyl model compounds was identified by e.s.r. spectroscopy. The mechanisms are based on earlier studies showing that ligninase acts by oxidizing appropriately substituted aromatic nuclei to aryl cation radicals [Kersten, Tien, Kalyanaraman & Kirk (1985) J. Biol. Chem. 260, 2609-2612; Hammel, Tien, Kalyanaraman & Kirk (1985) J. Biol. Chem. 260, 8348-8353].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号