首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   3篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   10篇
  2010年   11篇
  2009年   2篇
  2008年   7篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1983年   4篇
  1982年   7篇
  1981年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   
2.
3.
Cereals are the world's major source of food for human nutrition. Among these, rice (Oryza sativa) is the most prominent and represents the staple diet for more than two-fifths (2.4 billion) of the world's population, making it the most important food crop of the developing world (Anon., 2000a). Rice production in vast stretches of coastal areas is hampered due to high soil salinity. This is because rice is a glycophyte and it does not grow well under saline conditions. In order to increase rice production in these areas there is a need to develop rice varieties suited to saline environments. Research has shown that Porteresia coarctata, a highly salt tolerant wild relative of rice growing in estuarine soils, is an important material for transferring salt tolerant characteristics to rice. It is quite possible that Porteresia may be used as a parent for evolving better and truly salt resistant varieties. The inadequate results and the difficulties associated with conventional breeding techniques necessitate the use of the tools of crop biotechnology in unravelling some of the characteristics of Porteresia that have been highlighted in this report. In view of the limited resources available for increasing salinity tolerance to the breeders to wild rice germplasm, Porteresia is undoubtedly one of the key source species for elevating salinity tolerance in cultivated rice.  相似文献   
4.
5.
The effect of early postnatal undernutrition and subsequent rehabilitation on wet weight, DNA, RNA, protein and the activities of acid and alkaline DNases in the cerebellar region of rat brain was studied. The cerebellar region was found to be affected significantly during early undernutrition. Further, earlier the initiation of nutritional rehabilitation the better was the recovery and in some cases timely nutritional rehabilitation resulted in better than normal biochemical composition of the brain. The specific activities of acid and alkaline DNases were not affected by early undernutrition. However, the total activities of these enzymes were significantly low in undernourished rats (R115 and R21) Rehabilitation of these deprived groups upto 150 days resulted in higher amounts of these enzymes as compared to those of age-matched controls. It is concluded that the two DNases, are synthesized in a preferential manner during rehabilitation, It is further concluded that cerebellar region, in terms of development schedule and response to imposed calorie restriction, is intermediary between grey and white matter regions.  相似文献   
6.
The effect of neurotensin on submaximally-stimulated hepatobiliary and pancreatic secretion was studied in 6 healthy subjects. An intravenous infusion of neurotensin 1.4 ± 0.3 pmol/kg/min, designed to reproduce plasma neurotensin immunoreactivity levels within the physiological range, produced a significant increase in pancreatic bicarbonate output. Plasma concentrations of pancreatic polypeptide rose by 83 ± 16 pmol/l and were associated with a small reduction in trypsin, but no significant change in bilirubin outputs.  相似文献   
7.
High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10–12) leaf, young (juvenile, LPI 4–6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.Mass spectrometry (MS)-based proteomics has experienced tremendous growth in recent years, leading to the establishment of numerous protocols, platforms, and workflows for the characterization of protein expression at the genome level (1). Although these advancements have facilitated comprehensive proteomic investigations of simple bacterial isolates and microbial communities, the application of MS-based proteomics for plants and other higher eukaryotes remains underdeveloped. Recently, large-scale proteomic studies have been directed at characterization of Populus, a woody perennial model organism. With the recent release and subsequent curation of the P. trichocarpa genome (2), these large-scale MS-based proteomic investigations offer the potential to introduce new biological insights into woody perennial plant biology (3, 4, 5). For example, we have recently demonstrated the ability to measure ∼17% of the Populus proteome by coupling multidimensional liquid chromatography (MudPIT)1 with nano-electrospray tandem mass spectrometry (2D-LC-MS/MS) (6). Relative to the two-dimensional gel-based approaches (7), MudPIT provides enhanced separation and when used in conjunction with MS/MS, surpasses the throughput and number of identifiable proteins detected in complex mixtures (8). Although we have demonstrated the general effectiveness of this approach, the identification and quantitation of the proteins expressed in a plant cell or tissue are still notoriously complicated by a number of factors, including the size and complexity of plant genomes, abundance of protein variants, as well as the dynamic range of protein identification. To overcome these challenges, improvements are needed in sample preparation, MS instrumentation, and data interpretation.The architecture of plant cell walls provides resistance to chemical and biological degradation, thus requiring mechanical and detergent-based lysis for optimal proteome analysis. However, this criterion presents a major challenge for plant proteomic research using electrospray mass spectrometry, as detergent-containing solutions can impede enzymatic digestion and cause significant analyte suppression (9). Therefore, most plant proteomic studies using the “MudPIT” strategy apply mechanical disruption in conjunction with a detergent-free preparation method (10). Typically, strong chaotropic agents such as urea and guanidine hydrochloride are used for the extraction, denaturation, and digestion of proteins. In a recent study, Mann et al. (2009) introduced a filter-aided sample preparation (FASP) method that uses and effectively removes sodium dodecyl sulfate (SDS) before enzymatic digestion and electrospray analysis (11). This study demonstrated enhanced retrieval of peptides from biological materials, yielding a more accurate representation of the proteome. We developed a similar experimental approach for extraction of proteins from plant tissue to obtain a more comprehensive, unbiased proteome characterization well beyond that achievable with currently available methods. Similar to the FASP method, we demonstrate the power of SDS for proteomic sample preparation, not only in its ability to more-thoroughly lyse cells, but also its ability to better solubilize both hydrophilic and hydrophobic proteins. This powerful attribute gives proteolytic enzymes maximum opportunity to generate peptides specific to their cleavage potential so that at least a few representative peptides can be obtained for proteins that would have otherwise been discarded or lost because of insolubility, e.g. membrane-bound proteins. Rather than performing a buffer exchange with urea, depletion of SDS is achieved by precipitating proteins out of solution using trichloroacetic acid.Characterization of protein expression in plants is further complicated by the heterogeneous mixture of various cell types, each with a unique proteome signature and individualized response to environmental chemical or physical signals. This inherent complexity of plant proteomes and the large dynamic range in protein abundance overwhelms current analytical platforms (12). Moreover, biochemical regulatory networks in plants are more elaborate and dynamic than in microbial species; consequently, many biological components are left undiscovered, including modified peptides and low-abundance proteins (13, 14, 15). Recent developments in ion-trap MS instrumentation, namely the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have demonstrated improved ability to comprehensively characterize complex proteomics samples (16). Featuring a newly designed ion source and a two-chamber ion trap mass analyzer, the LTQ Velos achieves greater dynamic range, sensitivity, and speed of spectral acquisition when applied to complex proteomic samples. Cumulatively, the technological advancements afford substantial increases in the detection and identification of both proteins and unique peptides when compared with existing state-of-the-art technologies. Therefore, to satisfy the need for depth of proteome characterization in plants, we apply the newly developed LTQ Velos for mass spectrometry measurements of the Populus proteome.For most terrestrial plants, life begins and ends in the same physical location. For woody perennial plants, this sedentary lifestyle may last thousands of years. One consequence of this lifestyle is that each plant typically experiences dramatic changes in its ambient environment throughout its lifetime and, at any given time, equilibrium between endogenous growth processes and exogenous constraints exerted by the environment must be tightly controlled. To survive under varying environmental conditions, temporal plastic responses evoke patterns of protein expression that progressively influence morphological, anatomical, and functional traits of three principal organs—leaf, root, and stem. Collectively and individually, these organs operate to perceive and respond to periodic and chronic environment conditions. Currently, a comprehensive understanding of the spatial variation in protein expression patterns across the organ types is lacking for woody perennial plants, in which most large-scale proteome analyses with Populus were performed on isolated organs, tissues, organelles, or subcellular structures. For this reason, we combined the state-of-the-art LTQ-Velos platform with the SDS/TCA sample preparation methodology to generate a high-coverage proteome atlas of the principal organ types from Populus.  相似文献   
8.
Alpha-actinin-4 is required for normal podocyte adhesion   总被引:5,自引:0,他引:5  
Mutations in the alpha-actinin-4 gene ACTN4 cause an autosomal dominant human kidney disease. Mice deficient in alpha-actinin-4 develop a recessive phenotype characterized by kidney failure, proteinuria, glomerulosclerosis, and retraction of glomerular podocyte foot processes. However, the mechanism by which alpha-actinin-4 deficiency leads to glomerular disease has not been defined. Here, we examined the effect of alpha-actinin-4 deficiency on the adhesive properties of podocytes in vivo and in a cell culture system. In alpha-actinin-4-deficient mice, we observed a decrease in the number of podocytes per glomerulus compared with wild-type mice as well as the presence of podocyte markers in the urine. Podocyte cell lines generated from alpha-actinin-4-deficient mice were less adherent than wild-type cells to glomerular basement membrane (GBM) components collagen IV and laminin 10 and 11. We also observed markedly reduced adhesion of alpha-actinin-4-deficient podocytes under increasing shear stresses. This adhesion deficit was restored by transfecting cells with alpha-actinin-4-GFP. We tested the strength of the integrin receptor-mediated linkages to the cytoskeleton by applying force to microbeads bound to integrin using magnetic pulling cytometry. Beads bound to alpha-actinin-4-deficient podocytes showed greater displacement in response to an applied force than those bound to wild-type cells. Consistent with integrin-dependent alpha-actinin-4-mediated adhesion, phosphorylation of beta1-integrins on alpha-actinin-4-deficient podocytes is reduced. We rescued the phosphorylation deficit by transfecting alpha-actinin-4 into alpha-actinin-4-deficient podocytes. These results suggest that alpha-actinin-4 interacts with integrins and strengthens the podocyte-GBM interaction thereby stabilizing glomerular architecture and preventing disease.  相似文献   
9.
Angiogenesis is associated with several pathological disorders as well as with normal physiological maintenance. Components of vascular basement membrane are speculated to regulate angiogenesis in both positive and negative manner. Recently, we reported that tumstatin (the NC1 domain of alpha 3 chain of type IV collagen) and its deletion mutant tum-5 possess anti-angiogenic activity. In the present study, we confirm that the anti-angiogenic activity of tumstatin and tum-5 is independent of disulfide bond requirement. This property of tum-5 allowed us to use overlapping synthetic peptide strategy to identify peptide sequence(s) which possess anti-angiogenic activity. Among these peptides, only the T3 peptide (69-88 amino acids) and T7 peptide (74-98 amino acids) inhibited proliferation and induced apoptosis specifically in endothelial cells. The peptides, similar to tumstatin and the tum-5 domain, bind and function via alpha(v)beta(3) in an RGD-independent manner. Restoration of a disulfide bond between two cysteines within the peptide did not alter the anti-angiogenic activity. Additionally, these studies show that tumstatin peptides can inhibit proliferation of endothelial cells in the presence of vitronectin, fibronectin, and collagen I. Anti-angiogenic effect of the peptides was further confirmed in vivo using a Matrigel plug assay in C57BL/6 mice. Collectively, these experiments suggest that the anti-angiogenic activity of tumstatin is localized to a 25-amino acid region of tumstatin and it is independent of disulfide bond linkage. Structural features and potency of the tumstatin peptide make it highly feasible as a potential anti-cancer drug.  相似文献   
10.
Components of vascular basement membrane are involved in regulating angiogenesis. Recently, tumstatin (the NC1 domain of alpha3 chain of type IV collagen) was identified as possessing anti-angiogenic activity. In the present study, the anti-angiogenic activity of tumstatin was localized to the putative 54-132-amino acid Tum-5 domain, and the activity mediated by alpha(v)beta(3) integrin interaction in an RGD-independent manner. The recombinant Tum-5 produced in Escherichia coli and Pichia Pastoris specifically inhibited proliferation and caused apoptosis of endothelial cells with no significant effect on nonendothelial cells. Tum-5 also inhibited tube formation of endothelial cells on Matrigel and induced G1 endothelial cell cycle arrest. Moreover, anti-angiogenic effect of Tum-5 was also examined in vivo using both a Matrigel plug assay in C57BL/6 mice and human prostate cancer (PC-3) xenografts in nude mice. The in vivo results demonstrate that Tum-5 at 1 mg/kg significantly inhibited growth of PC-3 tumors in association with a decrease in CD31 positive vasculature. These in vivo studies also show that, at molar equivalents, human Tum-5 is at least 10-fold more active than human endostatin. In addition, these studies for the first time suggest that through the action of endogenous inhibitors, alpha(v)beta(3) integrin may also function as a negative regulator of angiogenesis. Taken together, these findings demonstrate that Tum-5, a domain derived from tumstatin, is an effective inhibitor of tumor-associated angiogenesis and a promising candidate for the treatment of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号