首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   14篇
  国内免费   1篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   12篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有133条查询结果,搜索用时 808 毫秒
1.
2.
3.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
4.
Hazard rate models with covariates.   总被引:3,自引:0,他引:3  
Many problems, particularly in medical research, concern the relationship between certain covariates and the time to occurrence of an event. The hazard or failure rate function provides a conceptually simple representation of time to occurrence data that readily adapts to include such generalizations as competing risks and covariates that vary with time. Two partially parametric models for the hazard function are considered. These are the proportional hazards model of Cox (1972) and the class of log-linear or accelerated failure time models. A synthesis of the literature on estimation from these models under prospective sampling indicates that, although important advances have occurred during the past decade, further effort is warranted on such topics as distribution theory, tests of fit, robustness, and the full utilization of a methodology that permits non-standard features. It is further argued that a good deal of fruitful research could be done on applying the same models under a variety of other sampling schemes. A discussion of estimation from case-control studies illustrates this point.  相似文献   
5.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
6.
Glucans are fungal cell wall polysaccharides which stimulate innate immune responses. We determined the minimum unit ligand that would bind to glucan receptors on human U937 cells using laminarin-derived pentaose, hexaose, and heptaose glucan polymers. When U937 membranes were pretreated with the oligosaccharides and passed over a glucan surface, only the heptasaccharide inhibited the interaction of glucan with membrane receptors at a K(d) of 31 microM (95% CI 20-48 microM) and 100% inhibition. However, the glucan heptasaccharide did not stimulate U937 monocyte NFkappaB signaling, nor did it increase survival in a murine model of polymicrobial sepsis. Laminarin, a larger and more complex glucan polymer (M(w) = 7700 g/mol), only partially inhibited binding (61 +/- 4%) at a K(d) of 2.6 microM (99% CI 1.7-4.2 microM) with characteristics of a single binding site. These results indicate that a heptasaccharide is the smallest unit ligand recognized by macrophage glucan receptors. The data also indicate the presence of at least two glucan-binding sites on U937 cells and that the binding sites on human monocyte/macrophages can discriminate between glucan polymers. The heptasaccharide and laminarin were receptor antagonists, but they were not receptor agonists with respect to activation of NFkappaB-dependent signaling pathways or protection against experimental sepsis.  相似文献   
7.
Glucans are (1-3)-beta-D-linked polymers of glucose that are produced as fungal cell wall constituents and are also released into the extracellular milieu. Glucans modulate immune function via macrophage participation. The first step in macrophage activation by (1-3)-beta-D-glucans is thought to be the binding of the polymer to specific macrophage receptors. We examined the binding/uptake of a variety of water soluble (1-3)-beta-D-glucans and control polymers with different physicochemical properties to investigate the relationship between polymer structure and receptor binding in the CR3- human promonocytic cell line, U937. We observed that the U937 receptors were specific for (1-->3)-beta-D-glucan binding, since mannan, dextran, or barley glucan did not bind. Scleroglucan exhibited the highest binding affinity with an IC(50)of 23 nM, three orders of magnitude greater than the other (1-->3)-beta-D-glucan polymers examined. The rank order competitive binding affinities for the glucan polymers were scleroglucan>schizophyllan > laminarin > glucan phosphate > glucan sulfate. Scleroglucan also exhibited a triple helical solution structure (nu = 1.82, beta = 0.8). There were two different binding/uptake sites on U937 cells. Glucan phosphate and schizophyllan interacted nonselectively with the two sites. Scleroglucan and glucan sulfate interacted preferentially with one site, while laminarin interacted preferentially with the other site. These data indicate that U937 cells have at least two non-CR3 receptor(s) which specifically interact with (1-->3)-beta-D-glucans and that the triple helical solution conformation, molecular weight and charge of the glucan polymer may be important determinants in receptor ligand interaction.  相似文献   
8.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
9.
Intracellular proteins with a carboxy-terminal transmembrane domain and the amino-terminus oriented toward the cytosol are known as 'tail-anchored' proteins. Tail-anchored proteins have been of considerable interest because several important classes of proteins, including the vesicle-targeting/fusion proteins known as SNAREs and the apoptosis-related proteins of the Bcl-2 family, among others, utilize this unique membrane-anchoring motif. Here, we use a bioinformatic technique to develop a comprehensive list of potentially tail-anchored proteins in the human genome. Our final list contains 411 entries derived from 325 unique genes. We also analyzed both known and predicted tail-anchored proteins with respect to the amino acid composition of the transmembrane segments. This analysis revealed a distinctive composition of the membrane anchor in SNARE proteins.  相似文献   
10.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号