首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   2篇
  2022年   2篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   9篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   7篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2000年   5篇
  1997年   2篇
  1980年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
2.

Background and Aim

Obesity is associated with elevated serum transaminase levels and non-alcoholic fatty liver disease and weight loss is a recommended therapeutic strategy. Bariatric surgery is effective in obtaining and maintaining weight loss. Aim of the present study was to examine the long-term effects of bariatric surgery on transaminase levels in obese individuals.

Methods

The Swedish Obese Subjects (SOS) study is a prospective controlled intervention study designed to compare the long-term effects of bariatric surgery and usual care in obese subjects. A total of 3,570 obese participants with no excess of alcohol consumption at baseline (1,795 and 1,775 in the control and surgery group, respectively) were included in the analyses. Changes in transaminase levels during follow-up were compared in the surgery and control groups.

Results

Compared to usual care, bariatric surgery was associated with lower serum ALT and AST levels at 2- and 10- year follow up. The reduction in ALT levels was proportional to the degree of weight loss. Both the incidence of and the remission from high transaminase levels were more favorable in the surgery group compared to the control group. Similarly, the prevalence of ALT/AST ratio <1 was lower in the surgery compared to the control group at both 2- and 10-year follow up.

Conclusions

Bariatric surgery results in a sustained reduction in transaminase levels and a long-term benefit in obese individuals.  相似文献   
3.
4.
The aim of this study was to examine top-down effects of cursorial spiders in subsidized coastal food webs. Top-down effects were examined by selectively removing cursorial spiders, mainly wolf spiders, from small islands (26–1834 m2) during 2004–2007. The removal success varied among islands and years, and spider densities were reduced by 30–65%. To examine treatment effects, arthropods were sampled using a vacuum sampling device at three occasions each summer. The densities of other arthropod predators, especially web spiders and carabids, were higher on islands where cursorial spiders had been removed compared to control islands. This treatment effect probably occurred through a combination of competitive release and reduced intraguild predation from cursorial spiders. No treatment effects were found on herbivore or detritivore densities and plant biomass. This lack of effect may either be because spiders indeed have fairly weak effects on herbivore and detritivore densities on Baltic shorelines or that the removal success of spiders was insufficient for observing such effects. Treatment effects may also be weak because negative effects exerted by spiders on herbivore and detritivore populations were balanced by increased predation by insect predators.  相似文献   
5.
Obesity and obesity co-morbidities are associated with a low grade inflammation and elevated serum levels of acute phase proteins, including serum amyloid A (SAA). In the non-acute phase in humans, adipocytes are major producers of SAA but the function of adipocyte-derived SAA is unknown. To clarify the role of adipocyte-derived SAA, a transgenic mouse model expressing human SAA1 (hSAA) in adipocytes was established. hSAA expression was analysed using real-time PCR analysis. Male animals were challenged with a high fat (HF) diet. Plasma samples were subjected to fast protein liquid chromatography (FPLC) separation. hSAA, cholesterol and triglyceride content were measured in plasma and in FPLC fractions. Real-time PCR analysis confirmed an adipose tissue-specific hSAA gene expression. Moreover, the hSAA gene expression was not influenced by HF diet. However, hSAA plasma levels in HF fed animals (37.7±4.0 µg/mL, n = 7) were increased compared to those in normal chow fed animals (4.8±0.5 µg/mL, n = 10; p<0.001), and plasma levels in the two groups were in the same ranges as in obese and lean human subjects, respectively. In FPLC separated plasma samples, the concentration of hSAA peaked in high-density lipoprotein (HDL) containing fractions. In addition, cholesterol distribution over the different lipoprotein subfractions as assessed by FPLC analysis was similar within the two experimental groups. The established transgenic mouse model demonstrates that adipose tissue produced hSAA enters the circulation, resulting in elevated plasma levels of hSAA. This new model will enable further studies of metabolic effects of adipose tissue-derived SAA.  相似文献   
6.
Tapasin (tpn), an essential component of the MHC class I (MHC I) loading complex, has a canonical double lysine motif acting as a retrieval signal, which mediates retrograde transport of escaped endoplasmic reticulum (ER) proteins from the Golgi back to the ER. In this study, we mutated tpn with a substitution of the double lysine motif to double alanine (GFP-tpn-aa). This mutation abolished interaction with the coatomer protein complex I coatomer and resulted in accumulation of GFP-tpn-aa in the Golgi compartment, suggesting that the double lysine is important for the retrograde transport of tpn from late secretory compartments to the ER. In association with the increased Golgi distribution, the amount of MHC I exported from the ER to the surface was increased in 721.220 cells transfected with GFP-tpn-aa. However, the expressed MHC I were less stable and had increased turnover rate. Our results suggest that tpn with intact double lysine retrieval signal regulates retrograde transport of unstable MHC I molecules from the Golgi back to the ER to control the quality of MHC I Ag presentation.  相似文献   
7.
The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo–S and Mo–O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme.  相似文献   
8.
Havelius KG  Styring S 《Biochemistry》2007,46(26):7865-7874
The photosystem II (PSII) reaction center contains two redox active tyrosines, YZ and YD, situated on the D1 and D2 proteins, respectively. By illumination at 5 K, oxidation of YZ in oxygen-evolving PSII can be observed as induction of the Split S1 EPR signal from YZ* in magnetic interaction with the CaMn4 cluster, whereas oxidation of YD can be observed as the formation of the free radical EPR signal from YD*. We have followed the light induced induction at 5 K of the Split S1 signal between pH 4-8.5. The formation of the signal, that is, the oxidation of YZ, is pH independent and efficient between pH 5.5 and 8.5. At low pH, the split signal formation decreases with pKa approximately 4.7-4.9. In samples with chemically pre-reduced YD, the pH dependent competition between YZ and YD was studied. Only YZ was oxidized below pH 7.2, but at pH above 7.2, the oxidation of YD became possible, and the formation of the Split S1 signal diminished. The onset of YD oxidation occurred with pKa approximately 8.0, while the Split S1 signal decreased with pKa approximately 7.9 demonstrating that the two tyrosines compete in this pH interval. The results reflect the formation and breaking of hydrogen bonds between YZ and D1-His190 (HisZ) and YD and D2-His190 (HisD), respectively. The oxidation of respective tyrosine at 5 K demands that the hydrogen bond is well-defined; otherwise, the low-temperature oxidation is not possible. The results are discussed in the framework of recent literature data and with respect to the different oxidation kinetics of YZ and YD.  相似文献   
9.
We studied the competitive effects within and between two taxonomically distant freshwater herbivores, a snail and a mayfly, common in Swedish lakes, Lymnaea peregra and Cloeon dipterum, respectively, and their effect on grazing in a laboratory experiment. The experimental set-up consisted of 2-l aquaria, each containing a periphyton covered tile. Intra- and interspecific effects were tested by increasing the density of one species at a time in four different treatments, (1) snails (intraspecific treatment), (2) mayflies (intraspecific treatment), (3) mixed-snails (interspecific treatments, snails kept constant) and (4) mixed-mayflies (interspecific treatments, mayflies kept constant). Intraspecific competition affected both snails and mayflies negatively, i.e. increasing mortality with increasing con-specific density. Furthermore, there was a decrease in snail growth with increasing snail density. In the mixed-species treatments both species changed their microhabitat use indicating interspecific competition. Despite this, we also found a positive effect of mayfly density on snail growth, most likely due to indirect commensalism. No density-dependent effect of grazing on periphyton was found, probably due to interference competition between grazers. However, there was a significant difference in periphyton biomass, due to species composition of grazers. Irrespective of their densities, if they co-existed, the two grazer species decreased the periphyton biomass significantly compared with both single-species treatments. We considered this as a joint action of facilitation and interaction. Our results suggest that competition can be an important structuring factor in macroinvertebrate communities and that species composition can be significant for ecosystem processes within lentic environments.  相似文献   
10.
Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at the iron K-edge. In a time-resolved approach, HydA1 protein samples were prepared after increasing O(2) exposure periods at 0 °C. A kinetic analysis of changes in their x-ray absorption near edge structure and extended X-ray absorption fine structure spectra revealed three phases of O(2) reactions. The first phase (τ(1) ≤ 4 s) is characterized by the formation of an increased number of Fe-O,C bonds, elongation of the Fe-Fe distance in the binuclear unit (2Fe(H)), and oxidation of one iron ion. The second phase (τ(2) ≈ 15 s) causes a ~50% decrease of the number of ~2.7-? Fe-Fe distances in the [4Fe4S] subcluster and the oxidation of one more iron ion. The final phase (τ(3) ≤ 1000 s) leads to the disappearance of most Fe-Fe and Fe-S interactions and further iron oxidation. These results favor a reaction sequence, which involves 1) oxygenation at 2Fe(H(+)) leading to the formation of a reactive oxygen species-like superoxide (O(2)(-)), followed by 2) H-cluster inactivation and destabilization due to ROS attack on the [4Fe4S] cluster to convert it into an apparent [3Fe4S](+) unit, leading to 3) complete O(2)-induced degradation of the remainders of the H-cluster. This mechanism suggests that blocking of ROS diffusion paths and/or altering the redox potential of the [4Fe4S] cubane by genetic engineering may yield improved O(2) tolerance in [FeFe]-hydrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号