首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2001年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
An approach of combining flow cytometry (FCM) analysis with morphological and chemical profiling was used to assess the genetic stability and bioactive compound diversity in a Scutellaria baicalensis Georgi (Huang-qin) germplasm collection that was clonally maintained in in vitro for a period of over 6 years. Based on the FCM analysis of nuclei samples from young shoots, the nuclear DNA content of S. baicalensis was calculated as 0.84 pg/2C. FCM analysis showed no significant variation in the nuclear DNA contents and ploidy levels in the long-term in vitro maintained germplasm lines. Germplasm lines, acclimatized to ex vitro conditions, exhibited distinctive plant growth and bioactive compound production capacities. The high level of genetic stability observed in in vitro maintained S. baicalensis lines opens up a variety of opportunities such as allowing long-term aseptic preservation and easy distribution of well-characterized germplasm lines of this medicinal plant species. This study represents a novel approach for continuous maintenance, monitoring, and production of medicinal plant tissues with specific chemistry.  相似文献   
2.
Autophagy describes an intracellular process responsible for the lysosome-dependent degradation of cytosolic components. The ULK1/2 complex comprising the kinase ULK1/2 and the accessory proteins ATG13, RB1CC1, and ATG101 has been identified as a central player in the autophagy network, and it represents the main entry point for autophagy-regulating kinases such as MTOR and AMPK. It is generally accepted that the ULK1 complex is constitutively assembled independent of nutrient supply. Here we report the characterization of the ATG13 region required for the binding of ULK1/2. This binding site is established by an extremely short peptide motif at the C terminus of ATG13. This motif is mandatory for the recruitment of ULK1 into the autophagy-initiating high-molecular mass complex. Expression of a ULK1/2 binding-deficient ATG13 variant in ATG13-deficient cells resulted in diminished but not completely abolished autophagic activity. Collectively, we propose that autophagy can be executed by mechanisms that are dependent or independent of the ULK1/2-ATG13 interaction.  相似文献   
3.
Burkholderia cenocepacia is a virulent pathogen that causes significant morbidity and mortality in patients with cystic fibrosis (CF), survives intracellularly in macrophages, and uniquely causes systemic infections in CF. Autophagy is a physiologic process that involves engulfing non-functional organelles and proteins and delivering them for lysosomal degradation, but also plays a role in eliminating intracellular pathogens, including B. cenocepacia. Autophagy is defective in CF but can be stimulated in murine CF models leading to increased clearance of B. cenocepacia, but little is known about autophagy stimulation in human CF macrophages. IFN-γ activates macrophages and increases antigen presentation while also inducing autophagy in macrophages. We therefore, hypothesized that treatment with IFN-γ would increase autophagy and macrophage activation in patients with CF. Peripheral blood monocyte derived macrophages (MDMs) were obtained from CF and non-CF donors and subsequently infected with B. cenocepacia. Basal serum levels of IFN-γ were similar between CF and non-CF patients, however after B. cenocepacia infection there is deficient IFN-γ production in CF MDMs. IFN-γ treated CF MDMs demonstrate increased co-localization with the autophagy molecule p62, increased autophagosome formation, and increased trafficking to lysosomes compared to untreated CF MDMs. Electron microscopy confirmed IFN-γ promotes double membrane vacuole formation around bacteria in CF MDMs, while only single membrane vacuoles form in untreated CF cells. Bacterial burden is significantly reduced in autophagy stimulated CF MDMs, comparable to non-CF levels. IL-1β production is decreased in CF MDMs after IFN-γ treatment. Together, these results demonstrate that IFN-γ promotes autophagy-mediated clearance of B. cenocepacia in human CF macrophages.  相似文献   
4.
We report here for the first time callus formation from protoplasts in date palm (Phoenix dactylifera L.). Protoplasts were isolated from young leaves of offshoots and embryogenic calli in Deglet nour and Takerboucht genotypes. The protoplast yield depended on genotype, donor plant material, mixture of enzyme solution, and incubation time. With regard to the donor material, the best response was obtained with callus. Cell division was induced in both liquid culture and nurse culture. The best donor material for cell division was callus and the best response was obtained with the feeder layer, which induced a division rate of 30% in Deglet nour and 15% in Takerboucht genotypes. The dividing cells developed to microcalli on the feeder layer; the microcalli developed to calli on modified MS medium; however, the calli failed to regenerate into roots or shoots.  相似文献   
5.
The Butgenbach dam, built on the Warche River (Ardennes, Belgium) in 1931 brought about two major changes: a significant reduction in the frequency and magnitude of the minimum discharges during the growing season (April–September) and the formation of numerous new geomorphological features (islets, pebble bars and rock outcrops) in the low flow channel. These changes have lead to an increase in the number of vascular plants downstream from the dam. Between 1994 and 1997, 74 species (bryophytes and phanerogams) were found downstream from the dam and 12 species were identified upstream. Downstream, most of the species are typical of damp semi-natural grasslands and of the banks of the Haute Ardennes—environments both characterised by oligotrophy. Euryoecious species (with a wide ecological range) and nitrophile species (that indicate pollution of the Warche from urban effluents and agricultural fertilisers) are also present. However, the distribution of plant species in the low flow channel is very heterogeneous. The number of species varies from one geomorphological unit to another. Species are more numerous on islets (54 species) than on rock outcrops (35 species) and gravel bars (28 species). On the islets, the number of species present varies in accordance with the degree of erosion. The islets that are most eroded and those that are least eroded display a poor range of flora. The degree of erosion influences the depth of silt, pebbles and litter on the islets. With regard to rock outcrops, the wealth of flora present depends on the form they take. Stratified outcrops are richer in flora than protruding outcrops. The number of plant species present on gravel bars depends on the frequency and the scale of remobilisation of pebbly material by floods. Following large floods, the vegetation cover and the number of different species decreases. But, if the sites remain stable, the number of species first of all increases, only then to decrease due to the proliferation of competitive species such as Phalaris arundinacea L. The ranges of species found on the different geomorphological features do not display a high degree of similarity. Canonical correlation analysis reveals that the density and the total number of species on geomorphological features are most strongly influenced by the proportion of fine particulates (<2 mm).  相似文献   
6.
Autophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes. Since macrophages are major players in inflammation and defense against infection we determined the differences in methylation of autophagy genes in macrophages derived from young and aged mice. We found that promoter regions of Atg5 and LC3B are hypermethylated in macrophages from aged mice and this is accompanied by low gene expression. Treatment of aged mice and their derived macrophages with methyltransferase inhibitor (2)-epigallocatechin-3-gallate (EGCG) or specific DNA methyltransferase 2 (DNMT2) siRNA restored the expression of Atg5 and LC3 in vivo and in vitro. Our study builds a foundation for the development of novel therapeutics aimed to improve autophagy in the elderly population and suggests a role for DNMT2 in DNA methylation activities.  相似文献   
7.

Background and Aims

Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium.

Methods

Onion epidermal cells were submitted either to an osmotic shock or to a progressive osmotic shift from an osmotic pressure of 2 to 24 MPa to induce plasmolysis. After 30 min in the treatment solution, deplasmolysis was carried out. Cells were observed by microscopy during the whole cycle of dehydration–rehydration.

Key Results

The application of an osmotic shock to onion cells, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for <1 s, led to the formation of numerous exocytotic and osmocytic vesicles visualized through light and confocal microscopy. In contrast, after application of a progressive osmotic shift, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for 30 min, no vesicles were observed. Additionally, the absence of Hechtian strand connections led to the bursting of vesicles in the case of the osmotic shock.

Conclusions

It is concluded that the kinetics of osmotic dehydration strongly influence vesicle formation in onion cells, and that Hechtian strand connections between protoplasts and exocytotic vesicles are a prerequisite for successful deplasmolysis. These results suggest that a decrease in the area-to-volume ratio of a cell could cause cell death following an osmotic shock.  相似文献   
8.
One important limitation for routine production of somatic hybrids in banana (Musa spp.) is the difficulty in protoplast regeneration. To facilitate protoplast regeneration in banana, the crucial step of microcallus production was optimised for the following parameters: nurse culture medium, duration of microcalli on nurse culture, differing nurse cells, and filter composition. A comparative study between two nurse cell media, Ma2 and PCM, significantly affected the number of microcalli produced, which was 90 × 103 per Petri dish on Ma2 with 0.5 μM zeatin and 9.0 μM 2,4 D, and 30 × 103 per Petri dish on PCM. Moreover, continuous production of microcalli was achieved on Ma2 and the frequency of embryogenic cell aggregates was higher among microcalli on Ma2-medium. However, no cell division was observed in protoplasts cultured on Ma2 in which nurse cells were maintained for 2 weeks suggesting a requirement of effective presence of nurse cells for cell division of banana protoplasts. Use of a filter in conjugation with nurse cells resulted in greater than 7-fold increase in the number of microcalli. Flow cytometry analysis of 124 protoplast-derived plants showed the presence of hexaploid plants (mother plant is triploid) at the frequency of 4%. Together, these data are indicative of the complex factors involved in the regulation of plant cell division and growth. Each individual aspect must be optimised for efficient protocol development.  相似文献   
9.
Protoplast culture and plant regeneration of the dessert banana cultivar Grande Naine (Musa spp., Cavendish sub-group AAA) were achieved through somatic embryogenesis. Protoplasts were isolated from cell suspensions at a yield of 3᎒7 protoplasts/ml packed cell volume (0.5 g). For the induction of cell divisions, two banana cell suspensions, SF265 (AA) and IRFA903 (AA), were used as feeder layers. SF265 (AA) was found to be more efficient for inducing cell divisions than IRFA903 (AA). The first embryogenic cell suspensions were established from protoplast-derived microcalli. The transfer of microcalli and protoplast-derived cell suspensions onto regeneration medium containing plant growth regulators slightly increased the number of embryos relative to those maintained on a feeder layer with growth regulators. Plant regeneration was achieved in the same regeneration medium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号