首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  1988年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
West Nile virus (WNV) is a vector-borne pathogen that was first detected in the United States in 1999. The natural transmission cycle of WNV involves mosquito vectors and avian hosts, which vary in their competency to transmit the virus. American robins are an abundant backyard species in the United States and appear to have an important role in the amplification and dissemination of WNV. In this study we examine the response of American robins to infection with various WNV doses within the range of those administered by some natural mosquito vectors. Thirty American robins were assigned a WNV dosage treatment and needle inoculated with 100.95 PFU, 101.26 PFU, 102.15 PFU, or 103.15 PFU. Serum samples were tested for the presence of infectious WNV and/or antibodies, while oral swabs were tested for the presence of WNV RNA. Five of the 30 (17%) robins had neutralizing antibodies to WNV prior to the experiment and none developed viremia or shed WNV RNA. The proportion of WNV-seronegative birds that became viremic after WNV inoculation increased in a dose dependent manner. At the lowest dose, only 40% (2/5) of the inoculated birds developed productive infections while at the highest dose, 100% (7/7) of the birds became viremic. Oral shedding of WNV RNA followed a similar trend where robins inoculated with the lower two doses were less likely to shed viral RNA (25%) than robins inoculated with one of the higher doses (92%). Viremia titers and morbidity did not increase in a dose dependent manner; only two birds succumbed to infection and, interestingly, both were inoculated with the lowest dose of WNV. It is clear that the disease ecology of WNV is a complex interplay of hosts, vectors, and viral dose delivered.  相似文献   
2.
Streptococcus salivarius is one of the first colonizers of the human oral cavity and gut after birth and therefore may contribute to the establishment of immune homeostasis and regulation of host inflammatory responses. The anti-inflammatory potential of S. salivarius was first evaluated in vitro on human intestinal epithelial cells and human peripheral blood mononuclear cells. We show that live S. salivarius strains inhibited in vitro the activation of the NF-κB pathway on intestinal epithelial cells. We also demonstrate that the live S. salivarius JIM8772 strain significantly inhibited inflammation in severe and moderate colitis mouse models. These in vitro and in vivo anti-inflammatory properties were not found with heat-killed S. salivarius, suggesting a protective response exclusively with metabolically active bacteria.  相似文献   
3.
4.
5.
Streptococcus salivarius exhibited an anti-inflammatory effect on intestinal epithelial cells (IECs) and monocytes. Strains were screened using a reporter clone, HT-29/kB-luc-E, induced by tumor necrosis factor alpha (TNF-α). Supernatant from each strain downregulated NF-κB activation. The two most efficient strains produced an active metabolite (<3 kDa) which was able to downregulate the secretion of the proinflammatory chemokine interleukin-8 (IL-8).  相似文献   
6.
The purpose of this paper is to highlight the novel molecular characteristics and rheological properties of the polysaccharide produced by a bacterium isolated from extremophilic environment (Algerian Sahara). Phenotypic and molecular characteristics of the REG 0201M bacterial strain retained for this research were studied. Extracellular polysaccharide produced by REG 0201M was purified, characterized and its production was investigated. Analysis of 16S rDNA gene sequence showed that strain REG 0201M belonged to the species Paenibacillus tarimensis. In sucrose agar medium, 1.31 g dry weight of the polysaccharide per liter was produced. Evaluation of water absorption capacity showed that this polysaccharide was able to absorb 1000 times more water than its own weight. The average molecular weight determined by high-performance size exclusion chromatography multiangle laser light scattering was 1.718 × 106 g mol−1. Analysis of the monosaccharide composition by high-performance anion exchange chromatography showed the presence of fructose (77.67%) as the main neutral sugar, followed by galactose (20.37%), arabinose (1.79%), and rhamnose (0.16%). Its global charge determined by the Zeta potential measurement was about −35.27 ± 0.66 mV. The main functional groups were elucidated by Fourier-Transform Infrared Spectroscopy while the surface morphology was resolved by scanning electron microscopy analysis. Moreover, the rheological data revealed shear thinning properties with the same general behavior of the studied polysaccharide compared to xanthan. These results show the great potential of this polysaccharide, which could help to promote its use in various industries by replacing synthetic polymers.  相似文献   
7.

Background

Wild raccoons have been shown to be naturally exposed to avian influenza viruses (AIV). However, the mechanisms associated with these natural exposures are not well-understood.

Methodology/Principal Findings

We experimentally tested three alternative routes (water, eggs, and scavenged waterfowl carcasses) of AIV transmission that may explain how raccoons in the wild are exposed to AIV. Raccoons were exposed to 1) water and 2) eggs spiked with an AIV (H4N6), as well as 3) mallard carcasses experimentally inoculated with the same virus. Three of four raccoons exposed to the high dose water treatment yielded apparent nasal shedding of >102.0 PCR EID50 equivalent/mL. Little to no shedding was observed from the fecal route. The only animals yielding evidence of serologic activity during the study period were three animals associated with the high dose water treatment.

Conclusions/Significance

Overall, our results indicate that virus-laden water could provide a natural exposure route of AIV for raccoons and possibly other mammals associated with aquatic environments. However, this association appears to be related to AIV concentration in the water, which would constitute an infective dose. In addition, strong evidence of infection was only detected in three of four animals exposed to a high dose (e.g., 105.0 EID50/mL) of AIV in water. As such, water-borne transmission to raccoons may require repeated exposures to water with high concentrations of virus.  相似文献   
8.
9.
Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS) in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16), is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.  相似文献   
10.

Background

Cottontails (Sylvilagus spp.) are common mammals throughout much of the U.S. and are often found in peridomestic settings, potentially interacting with livestock and poultry operations. If these animals are susceptible to avian influenza virus (AIV) infections and shed the virus in sufficient quantities they may pose a risk for movement of avian influenza viruses between wildlife and domestic animals in certain situations.

Methodology/Principal Findings

To assess the viral shedding potential of AIV in cottontails, we nasally inoculated fourteen cottontails with a low pathogenic AIV (H4N6). All inoculated cottontails shed relatively large quantities of viral RNA both nasally (≤106.94 PCR EID50 equivalents/mL) and orally (≤105.09 PCR EID50 equivalents/mL). However, oral shedding tended to decline more quickly than did nasal shedding. No animals showed any obvious signs of disease throughout the study. Evidence of a serological response was found in all infected rabbits at 22 days post infection in convalescent sera.

Conclusions/Significance

To our knowledge, cottontails have not been previously assessed for AIV shedding. However, it was obvious that they shed AIV RNA extensively via the nasal and oral routes. This is significant, as cottontails are widely distributed throughout the U.S. and elsewhere. These mammals are often found in highly peridomestic situations, such as farms, parks, and suburban neighborhoods, often becoming habituated to human activities. Thus, if infected these mammals could easily transport AIVs short distances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号