首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
As a means for probing the microenvironment of zinc in the insulin hexamer and to investigate the effects of calcium ion on the assembly and the structure of the two-zinc insulin hexamer, the thermodynamics and kinetics of the reaction between the chromophoric divalent metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) and zinc-insulin have been investigated over a wide range of conditions. For [PAR]0 much greater than [Zn2+]0 and [Zn2+]/[In] less than or equal to 0.33, the reaction leads to the sequestering and ultimate removal of all of the insulin-bound Zn2+; for [Zn2+]0 much greater than [PAR]0, two stable ternary complexes are formed where Zn2+ has ligands derived from PAR as well as from hexameric insulin. For [Zn2+]/[In] ratios below 0.33, the equilibrium distribution between the two ternary complexes is dependent on the [Zn2+]/[In] ratio. One of the complexes is assigned to the monoanion of PAR coordinated to Zn2+ that resides in a His-B10 site. The other complex is proposed to involve the coordination of (PAR)Zn to the site formed by the alpha-NH2 group of Phe-B1 and the gamma-carboxylate ion of Glu-A17 across the dimer-dimer interface on the surface of the hexamer. With either PAR or zinc-insulin in large excess, the kinetics of the PAR optical density changes are remarkably similar and biphasic. The faster step is first order in PAR and first order in insulin-bound Zn2+ (k congruent to 3 X 10(3) M-1 s-1) and involves the formation of an intermediate in which PAR is coordinated to insulin-bound zinc at the His-B10 site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
An affinity column consisting of the specific peptide inhibitor of papain, Gly-Gly (O-benzyl)Tyr-Arg, attached to Sepharose was found to bind the active thiol proteinase papaya peptidase A specifically, but only at an ionic strength significantly higher than the one at which papain is bound. When a mixture of active papaya peptidase A and its irreversibly oxidized contaminant was applied to the column, the active enzyme was bound whereas the inactive material was not. The bound enzyme was released by deionized water and found to contain 1 mol of SH group/mol of protein. The different conditions required for the binding of the two enzymes to the immobilized peptide was shown to reflect different ionic-strength-dependences of the affinity of the two enzymes for the peptide in solution. Whereas the affinity of papain for the inhibitor appears to be insensitive to ionic strength over the range studied, that of papaya peptidase A is ionic-strength-dependent and always lower than that of papain. A rate assay is devised for papaya peptidase A with N-benzyloxycarbonylglycine p-nitrophenyl ester as the substrate at pH 5.5. After calibration against an active-site titration the assay yields the thiol-group concentration without interference from inactive contaminants. For the papaya peptidase A-catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester at pH 5.5 kcat. was found to be 16.7s-1, which is about 3 times the value found for the same reaction catalysed by papain.  相似文献   
3.
One- and two-dimensional 1H NMR spectroscopy have been employed to probe the association and subsequent conformational changes of metal-free insulin in sodium chloride solution at pH 9 and 9.4. These studies establish that the proton resonances of His(B5) and His(B10) are useful signatures of aggregation and conformation. Changes in chemical shifts and areas of resonances due to the C2 protons of His(B10) and His(B5) and transfer of magnetization experiments served to identify the association as the assembly of tetramer from dimers under our experimental conditions (pH 9.4, [insulin] greater than 1 mM, [NaCl] = 0.1 M). Sodium chloride also alters the equilibrium distribution of species in favor of a tetrameric species. The association equilibrium constant was estimated from area measurements to be approximately 5 x 10(3) M-1 at pH 9.4, 26 +/- 0.1 degrees C, and 0.1 M sodium chloride. Under conditions of 0.1 M sodium chloride concentration, nuclear Overhauser effect experiments in the one- and two-dimensional modes revealed an operative nuclear Overhauser effect between the His(B5) C2 protons and the 2,6 ring protons of a Tyr residue provisionally assigned as Tyr(B16). We conclude that this interaction is a diagnostic signature of a conformational transition whereupon an extended chain from residues B1 to B9 (T-state) is transformed into an alpha-helix (R-state) thus bringing the rings of His(B5) and Tyr(B16) from adjacent subunits across the monomer-monomer interface into van der Waals contact. This conformational flexibility is an added consideration to the discussion of the relevant structure of insulin for receptor binding.  相似文献   
4.
The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.  相似文献   
5.
The cobalt(II)-substituted proinsulin and insulin hexamers have been studied in solution via electronic absorption spectroscopy. Hexameric proinsulin is shown to undergo the phenol-induced T6 to R6 conformational transition in a manner analogous to that previously established for insulin. In the absence of coordinating anions, the coordination spheres of the Co(II) ions in the proinsulin and insulin R6 hexamers comprise identical pseudotetrahedral arrangements of 3 histidine residues and 1 hydroxide ion. At alkaline pH, the visible absorption spectrum of the phenol-induced R6 Co(II) center is strikingly similar to the distinctive spectrum of the alkaline form of Co(II)-carbonic anhydrase. Exogenous ligands may coordinate to the Co(II) ions of the R6 proinsulin and insulin hexamers via replacement of the hydroxide ion, forming pseudotetrahedral adducts possessing characteristic spectra. The binding affinity of such ligands is shown to be strongly pH-dependent. The data presented establish that, although the Co(II)-substituted proinsulin and insulin R6 hexamers lack enzyme-like activity, these species duplicate spectrochemical characteristics of the Co(II)-carbonic anhydrase active site that are believed to be important signatures of carbonic anhydrase catalytic function.  相似文献   
6.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
7.
Chromatographic and non‐chromatographic purification of biopharmaceuticals depend on the interactions between protein molecules and a solid–liquid interface. These interactions are dominated by the protein–surface properties, which are a function of protein sequence, structure, and dynamics. In addition, protein–surface properties are critical for in vivo recognition and activation, thus, purification strategies should strive to preserve structural integrity and retain desired pharmacological efficacy. Other factors such as surface diffusion, pore diffusion, and film mass transfer can impact chromatographic separation and resin design. The key factors that impact non‐chromatographic separations (e.g., solubility, ligand affinity, charges and hydrophobic clusters, and molecular dynamics) are readily amenable to computational modeling and can enhance the understanding of protein chromatographic. Previously published studies have used computational methods such as quantitative structure–activity relationship (QSAR) or quantitative structure–property relationship (QSPR) to identify and rank order affinity ligands based on their potential to effectively bind and separate a desired biopharmaceutical from host cell protein (HCP) and other impurities. The challenge in the application of such an approach is to discern key yet subtle differences in ligands and proteins that influence biologics purification. Using a relatively small molecular weight protein (insulin), this research overcame limitations of previous modeling efforts by utilizing atomic level detail for the modeling of protein–ligand interactions, effectively leveraging and extending previous research on drug target discovery. These principles were applied to the purification of different commercially available insulin variants. The ability of these computational models to correlate directionally with empirical observation is demonstrated for several insulin systems over a range of purification challenges including resolution of subtle product variants (amino acid misincorporations). Broader application of this methodology in bioprocess development may enhance and speed the development of a robust purification platform. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:154–164, 2015  相似文献   
8.

Background

Population movements along the Thailand-Cambodia border, particularly among highly mobile and hard-to-access migrant groups from Cambodia and Myanmar, are assumed to play a key role in the spread of artemisinin resistance. Data on treatment-seeking behaviours, knowledge and perceptions about malaria, and use of preventive measures is lacking as characteristics of this population prevent them from being represented in routine surveillance and the lack of a sampling frame makes reliable surveys challenging.

Methods

A survey of migrant populations from Cambodia and Myanmar was implemented in five selected rural locations in Thailand along the Thai-Cambodian border using respondent driven sampling (RDS) to determine demographic characteristics of the population, migratory patterns, knowledge about malaria, and health-care -seeking behaviours.

Results

The majority of migrants from Myanmar are long-term residents (98%) with no plans to move back to Myanmar, understand spoken Thai (77%) and can therefore benefit from health messages in Thai, have Thai health insurance (99%) and accessed public health services in Thailand (63%) for their last illness. In comparison, the majority of Cambodian migrants are short-term (72%). Of the short-term Cambodian migrants, 92% work in agriculture, 18% speak Thai, 3.4% have Thai health insurance, and the majority returned to Cambodia for treatment (45%), self-treated (11%), or did not seek treatment for their last illness (27%).

Conclusion

Most highly mobile migrants along the Thai-Cambodia border are not accessing health messages or health treatment in Thailand, increasing their risk of malaria and facilitating the spread of potentially resistant Plasmodium falciparum as they return to Cambodia to seek treatment. Reaching out to highly mobile migrants with health messaging they can understand and malaria diagnosis and treatment services they can access is imperative in the effort to contain the spread of artemisinin-resistant P. falciparum.  相似文献   
9.

Background and methods

Human metapneumovirus (hMPV) is a recently discovered respiratory virus associated with bronchiolitis, pneumonia, croup and exacerbations of asthma. Since respiratory viruses are frequently detected in patients with acute exacerbations of COPD (AE-COPD) it was our aim to investigate the frequency of hMPV detection in a prospective cohort of hospitalized patients with AE-COPD compared to patients with stable COPD and to smokers without by means of quantitative real-time RT-PCR.

Results

We analysed nasal lavage and induced sputum of 130 patients with AE-COPD, 65 patients with stable COPD and 34 smokers without COPD. HMPV was detected in 3/130 (2.3%) AE-COPD patients with a mean of 6.5 × 105 viral copies/ml in nasal lavage and 1.88 × 105 viral copies/ml in induced sputum. It was not found in patients with stable COPD or smokers without COPD.

Conclusion

HMPV is only found in a very small number of patients with AE-COPD. However it should be considered as a further possible viral trigger of AE-COPD because asymptomatic carriage is unlikely.  相似文献   
10.
近年来,植物遗传转化研究有了长足的发展。已经达到能够通过简单的遗传控制手段研究具有新表现型的植物,甚至达到进入商业化的程度。这些手段包括植物生物学的主要研究技术以及植物组织培养和树种改良的一些实用方法。尽管采用农瘤杆菌和鸟枪法等技术的植物遗传转化系统已经得到了广泛的应用,但是在如何开发具有能够得到控制表达的转基因高产植物方面,在如何使所得到的转基因植物远离遗传危害等方面,目前的转化系统遇到了极大的技术挑战。已经提出了各种各样的方法用于将新基因稳定地导入120多种不同植物的核基因组。本文将讨论这些遗传转化系统所需的生物学要求和实际应用方面的需求、基因转化和转基因表达的研究策略、遗传转化植物的鉴定以及转基因植物与大众的认可。本文将分为七个部分加以讨论:一、导言;二 、基因转化到细胞里的方法;三、植物遗传转化策略;四、植物遗传转化的鉴定;五、植物遗传转化的实际应用;六、转基因植物与环境;七、未来植物遗传转化的需求与发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号