首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
  1990年   1篇
  1979年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Glossopharyngeal insufflation (GI), a technique used by breath-hold divers to increase lung volume and augment diving depth and duration, is associated with untoward hemodynamic consequences. To study the cardiac effects of GI, we performed transthoracic echocardiography, using the subcostal window, in five elite breath-hold divers at rest and during GI. During GI, heart rate increased in all divers (mean of 53 beats/min to a mean of 100 beats/min), and blood pressure fell dramatically (mean systolic, 112 to 52 mmHg; mean diastolic, 75 mmHg to nondetectable). GI induced a 46% decrease in mean left ventricular end-diastolic area, 70% decrease in left ventricular end-diastolic volume, 49% increase in mean right ventricular end-diastolic area, and 160% increase in mean right ventricular end-diastolic volume. GI also induced biventricular systolic dysfunction; left ventricular ejection fraction decreased from 0.60 to a mean of 0.30 (P = 0.012); right ventricular ejection fraction, from 0.75 to a mean of 0.39 (P < 0.001). Wall motion of both ventricles became significantly abnormal during GI; the most prominent left ventricular abnormalities involved hypokinesis or dyskinesis of the interventricular septum, while right ventricular wall motion abnormalities involved all visible segments. In two divers, the inferior vena cava dilated with the appearance of spontaneous contrast during GI, signaling increased right atrial pressure and central venous stasis. Hypotension during GI is associated with acute biventricular systolic dysfunction. The echocardiographic pattern of right ventricular systolic dysfunction is consistent with acute pressure overload, whereas concurrent left ventricular systolic dysfunction is likely due to ventricular interdependence.  相似文献   
2.
High‐protein feeding acutely lowers postprandial glucose concentration compared to low‐protein feeding, despite a dichotomous rise of circulating glucagon levels. The physiological role of this glucagon rise has been largely overlooked. We here first report that glucagon signalling in the dorsal vagal complex (DVC) of the brain is sufficient to lower glucose production by activating a Gcgr–PKAERK–KATP channel signalling cascade in the DVC of rats in vivo. We further demonstrate that direct blockade of DVC Gcgr signalling negates the acute ability of high‐ vs. low‐protein feeding to reduce plasma glucose concentration, indicating that the elevated circulating glucagon during high‐protein feeding acts in the brain to lower plasma glucose levels. These data revise the physiological role of glucagon and argue that brain glucagon signalling contributes to glucose homeostasis during dietary protein intake.  相似文献   
3.
4.
KT Potkin  WE Bunney 《PloS one》2012,7(8):e42191
Sleep plays an important role in the consolidation of memory. This has been most clearly shown in adults for procedural memory (i.e. skills and procedures) and declarative memory (e.g. recall of facts). The effects of sleep and memory are relatively unstudied in adolescents. Declarative memory is important in school performance and consequent social functioning in adolescents. This is the first study to specifically examine the effects of normal sleep on auditory declarative memory in an early adolescent sample. Given that the majority of adolescents do not obtain the recommended amount of sleep, it is critical to study the cognitive effects of normal sleep. Forty male and female normal, healthy adolescents between the ages of ten and fourteen years old were randomly assigned to sleep and no sleep conditions. Subjects were trained on a paired-associate declarative memory task and a control working memory task at 9am, and tested at night (12 hours later) without sleep. The same number of subjects was trained at 9pm and tested 9am following sleep. An increase of 20.6% in declarative memory, as measured by the number correct in a paired-associate test, following sleep was observed compared to the group which was tested at the same time interval without sleep (p<0.03). The performance on the control working memory task that involved encoding and memoranda manipulation was not affected by time of day or relationship to sleep. Declarative memory is significantly improved by sleep in a sample of normal adolescents.  相似文献   
5.
Larger CAG/CTG trinucleotide-repeat tracts in individuals affected with schizophrenia (SCZ) and bipolar affective disorder (BPAD) in comparison with control individuals have previously been reported, implying a possible etiological role for trinucleotide repeats in these diseases. Two unstable CAG/CTG repeats, SEF2-1B and ERDA1, have recently been cloned, and studies indicate that the majority of individuals with large repeats as detected by repeat-expansion detection (RED) have large repeat alleles at these loci. These repeats do not show association of large alleles with either BPAD or SCZ. Using RED, we have identified a BPAD individual with a very large CAG/CTG repeat that is not due to expansion at SEF2-1B or ERDA1. From this individual's DNA, we have cloned a highly polymorphic trinucleotide repeat consisting of (CTA)n (CTG)n, which is very long ( approximately 1,800 bp) in this patient. The repeat region localizes to chromosome 13q21, within 1.2 cM of fragile site FRA13C. Repeat alleles in our sample were unstable in 13 (5.6%) of 231 meioses. Large alleles (>100 repeats) were observed in 14 (1. 25%) of 1,120 patients with psychosis, borderline personality disorder, or juvenile-onset depression and in 5 (.7%) of 710 healthy controls. Very large alleles were also detected for Centre d'Etude Polymorphisme Humaine (CEPH) reference family 1334. This triplet expansion has recently been reported to be the cause of spinocerebellar ataxia type 8 (SCA8); however, none of our large alleles above the disease threshold occurred in individuals either affected by SCA or with known family history of SCA. The high frequency of large alleles at this locus is inconsistent with the much rarer occurrence of SCA8. Thus, it seems unlikely that expansion alone causes SCA8; other genetic mechanisms may be necessary to explain SCA8 etiology.  相似文献   
6.
7.
8.
We describe a new scaffold-free three-dimensional (3D) cell culture model using cholesteryl ester based lyotropic liquid crystal (LC) substrates. Keratinocytes were deposited randomly on the LC surface where they self-assembled into 3D microtissues or keratinospheroids. The cell density required to form spheroids was optimized. We investigated cell viability using dead/live cell assays. The adhesion characteristics of cells within the microtissues were determined using histological sectioning and immunofluorescence staining. Fourier transform infrared spectroscopy (FTIR) was used to characterize the biochemistry of the keratinospheroids. We found that both cells and microtissues could migrate on the LC surface. The viability study indicated approximately 80% viability of cells in the microtissues up to 20 days of culture. Strong intercellular adhesion was observed in the stratification of the multi-layered microspheroids using field emission-scanning electron microscopy (FE-SEM) and histochemical staining. The cytoskeleton and vinculins of the cells in the microtissues were expressed diffusely, but the microtissues were enriched with lipids and nucleic acids, which indicates close resemblance to the conditions in vivo. The basic 3D culture model based on LC may be used for cell and microtissue migration studies in response to cytochemical treatment.  相似文献   
9.

Introduction  

In inflammatory joint disease, such as osteoarthritis (OA), there is an increased level of proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines stimulate the production of matrix metalloproteinases (MMPs), which leads to the degradation of the cartilage extracellular matrix and the loss of key structural components such as sulphated glycosaminoglycan (sGAG) and collagen II. The aim of this study was to examine the therapeutic potential of n-3 polyunsaturated fatty acids (PUFAs) in an in vitro model of cartilage inflammation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号