首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  2021年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1957年   2篇
  1954年   2篇
  1951年   1篇
排序方式: 共有32条查询结果,搜索用时 406 毫秒
1.
2.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
3.
4.
5.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
6.
Abstract: Manipulation of forest habitat via mechanical thinning or prescribed fire has become increasingly common across western North America. Nevertheless, empirical research on effects of those activities on wildlife is limited, although prescribed fire in particular often is assumed to benefit large herbivores. We evaluated effects of season and spatial scale on response of Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) to experimental habitat manipulation at the Starkey Experimental Forest and Range in northeastern Oregon, USA. From 2001 to 2003, 26 densely stocked stands of true fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned whereas 27 similar stands were left untreated to serve as experimental controls. We used location data for elk and mule deer collected during spring (1 Apr-14 Jun) and summer (15 Jun-31 Aug) of 1999–2006 to compare use of treated and untreated stands and to model effects of environmental covariates on use of treated stands. In spring, elk selected burned stands and avoided control stands within the study area (second-order selection; large scale). Within home ranges (third-order selection; small scale), however, elk did not exhibit selection. In addition, selection of treatment stands by elk in spring was not strongly related to environmental covariates. Conversely, in summer elk selected control stands and either avoided or used burned stands proportional to their availability at the large scale; patterns of space use within home ranges were similar to those observed in spring. Use of treatment stands by elk in summer was related to topography, proximity to roads, stand size and shape, and presence of cattle, and a model of stand use explained 50% of variation in selection ratios. Patterns of stand use by mule deer did not change following habitat manipulation, and mule deer avoided or used all stand types proportional to their availability across seasons and scales. In systems similar to Starkey, manipulating forest habitat with prescribed fire might be of greater benefit to elk than mule deer where these species are sympatric, and thus maintaining a mixture of burned and unburned (late successional) habitat might provide better long-term foraging opportunities for both species than would burning a large proportion of a landscape.  相似文献   
7.
8.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
9.
ABSTRACT Studies of resource selection form the basis for much of our understanding of wildlife habitat requirements, and resource selection functions (RSFs), which predict relative probability of use, have been proposed as a unifying concept for analysis and interpretation of wildlife habitat data. Logistic regression that contrasts used and available or unused resource units is one of the most common analyses for developing RSFs. Recently, resource utilization functions (RUFs) have been developed, which also predict probability of use. Unlike RSFs, however, RUFs are based on a continuous metric of space use summarized by a utilization distribution. Although both RSFs and RUFs predict space use, a direct comparison of these 2 modeling approaches is lacking. We compared performance of RSFs and RUFs by applying both approaches to location data for 75 Rocky Mountain elk (Cervus elaphus) and 39 mule deer (Odocoileus hemionus) collected at the Starkey Experimental Forest and Range in northeastern Oregon, USA. We evaluated differences in maps of predicted probability of use, relative ranking of habitat variables, and predictive power between the 2 models. For elk, 3 habitat variables were statistically significant (P < 0.05) in the RSF, whereas 7 variables were significant in the RUF. Maps of predicted probability of use differed substantially between the 2 models for elk, as did the relative ranking of habitat variables. For mule deer, 4 variables were significant in the RSF, whereas 6 were significant in the RUF, and maps of predicted probability of use were similar between models. In addition, distance to water was the top-ranked variable in both models for mule deer. Although space use by both species was predicted most accurately by the RSF based on cross-validation, differences in predictive power between models were more substantial for elk than mule deer. To maximize accuracy and utility of predictive wildlife-habitat models, managers must be aware of the relative strengths and weaknesses of different modeling techniques. We conclude that although RUFs represent a substantial advance in resource selection theory, techniques available for generating RUFs remain underdeveloped and, as a result, RUFs sometimes predict less accurately than models derived using more conventional techniques.  相似文献   
10.
Recently, a novel mode of sulphur oxidation was described in marine sediments, in which sulphide oxidation in deeper anoxic layers was electrically coupled to oxygen reduction at the sediment surface. Subsequent experimental evidence identified that long filamentous bacteria belonging to the family Desulfobulbaceae likely mediated the electron transport across the centimetre-scale distances. Such long-range electron transfer challenges some long-held views in microbial ecology and could have profound implications for sulphur cycling in marine sediments. But, so far, this process of electrogenic sulphur oxidation has been documented only in laboratory experiments and so its imprint on the seafloor remains unknown. Here we show that the geochemical signature of electrogenic sulphur oxidation occurs in a variety of coastal sediment environments, including a salt marsh, a seasonally hypoxic basin, and a subtidal coastal mud plain. In all cases, electrogenic sulphur oxidation was detected together with an abundance of Desulfobulbaceae filaments. Complementary laboratory experiments in intertidal sands demonstrated that mechanical disturbance by bioturbating fauna destroys the electrogenic sulphur oxidation signal. A survey of published geochemical data and 16S rRNA gene sequences identified that electrogenic sulphide oxidation is likely present in a variety of marine sediments with high sulphide generation and restricted bioturbation, such as mangrove swamps, aquaculture areas, seasonally hypoxic basins, cold sulphide seeps and possibly hydrothermal vent environments. This study shows for the first time that electrogenic sulphur oxidation occurs in a wide range of marine sediments and that bioturbation may exert a dominant control on its natural distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号