首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   14篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2003年   4篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1992年   2篇
排序方式: 共有52条查询结果,搜索用时 46 毫秒
1.
rRNA internal transcribed spacer phylogeny showed that Chesapeake Bay is populated with diverse Synechococcus strains, including members of the poorly studied marine cluster B. Marine cluster B prevailed in the upper bay, while marine cluster A was common in the lower bay. Interestingly, marine cluster B Synechococcus included phycocyanin- and phycoerythrin-rich strains.  相似文献   
2.
Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.  相似文献   
3.
4.
Distribution of viruses in the Chesapeake Bay.   总被引:16,自引:6,他引:10       下载免费PDF全文
High virus counts were found in water samples collected from the Chesapeake Bay. Viruses were enumerated by ultracentrifugation of water samples onto grids which were visualized by transmission electron microscopy. Virus counts in September 1990, April 1991, June 1991, August 1991, and October 1991 ranged between 2.6 x 10(6) and 1.4 x 10(8) viruses ml-1 with a mean of 2.5 x 10(7) viruses ml-1. Virus counts were usually at least three times higher than direct bacterial counts in corresponding samples. Virus counts in August and October were significantly higher than at the other sampling times, whereas bacterial counts were significantly lower at that time, yielding mean virus-to-bacterium ratios of 12.6 and 25.6, respectively. From analysis of morphology of the virus particles, it is concluded that a large proportion of the viruses are bacteriophages. The high virus counts obtained in this study suggest that viruses may be an important factor affecting bacterial populations in the Chesapeake Bay, with implications for gene transfer in natural aquatic bacterial populations and release of genetically engineered microorganisms to estuarine and coastal environments.  相似文献   
5.
Viruses saturate the world around us, yet a basic understanding of how viral impacts on microbial host organisms vary over days to hours, which typify the replication cycles of aquatic viruses, remains elusive. Thus, diel patterns of viral production (VP) in Chesapeake Bay surface waters were examined on five sampling dates. Day-to-day variations in VP in the Chesapeake and coastal California surface waters were also investigated. Significant variations in VP were detected over 24 h cycles during four of five studies, but rates did not vary significantly over the course of a few days in either location. Diel patterns of VP displayed seasonality with shorter viral assemblage turnover times and shorter times to maximum viral abundance in summer, implying shorter replication cycles for virus–host systems in warmer months. No correlation was found between VP and time of day, likely due to seasonal changes in the diel patterns of VP. This analysis significantly increases our knowledge of the short-term patterning of in situ VP, and thus viral impacts, and suggests that variations in viral biology in response to changes in host communities or physio-chemical properties affect both diel and seasonal cycles and magnitudes of VP.  相似文献   
6.
Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.  相似文献   
7.
Despite significant implications of viral activity in sediment ecosystems, there are limited data describing how sediment viral assemblages respond to broader ecosystem changes. To document this, the spatial and temporal dynamics of viral and bacterial abundance (BA) and changes in the morphological distribution of viruses were examined within three salinity regions over 2 years. Viral abundances (VA) ranged from 0.2 to 17 × 10(10) viruses mL(-1) sediment while direct bacterial counts ranged from 3.8 to 37 × 10(8) cells mL(-1) sediment. Peaks and valleys in the abundance of extracted viruses and bacteria from surface sediments occurred simultaneously, with lows in February 2004 and highs in April 2003. Across all samples, viral and BA were positively correlated (P < 0.001). Vertical profiles showed a decrease in viral and BA with depth in sediments. Based on transmission electron microscopy results, viruses with diminutive capsids (20-50 nm) and from the Myoviridae and Podoviridae viral family types were dominant within surface sediments. The most morphologically diverse viral assemblages occurred in autumn samples from the sandy, polyhaline station and spring samples from the mesohaline station. Seasonal changes showed an average 72% decrease in VA from spring to winter. These observations support the view that viriobenthos assemblages are responsive to seasonal environmental changes and that viral processes have significant implications for the biogeochemical processes mediated by bacterial communities within Bay sediments.  相似文献   
8.
Direct enumeration and genetic analyses indicate that aquatic sediments harbor abundant and diverse viral communities. Thus far, synecological analysis of estuarine sediment viral diversity over an annual cycle has not been reported. This oversight is due in large part to a lack of molecular genetic approaches for assessing viral diversity within a large collection of environmental samples. Here, randomly amplified polymorphic DNA PCR (RAPD-PCR) was used to examine viral genotypic diversity within Chesapeake Bay sediments. Using a single 10-mer oligonucleotide primer for all samples, RAPD-PCR analysis of sediment viral assemblages yielded unique banding patterns across spatial and temporal scales, with the occurrence of specific bands varying among the sample set. Cluster analysis of RAPD-PCR amplicon banding patterns indicated that sediment viral assemblages changed with season and to a lesser extent with geographic location. Sequence analysis of RAPD-PCR amplicons revealed that 76% of sediment viral sequences were not homologous to any sequence in the GenBank nonredundant protein database. Of the GenBank sequence homologs, the majority belonged to viruses within the Podoviridae (24%) and Myoviridae (22%) viral families, which agrees with the previously observed frequencies of these morphological families in Chesapeake Bay sediments. Furthermore, the majority of the sediment viral sequences homologous to GenBank nonredundant protein sequences were phages or prophages (57%). Hence, RAPD-PCR proved to be a reliable and useful approach for characterization of viral assemblages and the genetic diversity of viruses within aquatic sediments.Large numbers of viruses, an estimated abundance greater than 1031 viruses worldwide (11, 26), have been found in a variety of environments, including seawater (38), freshwater (19), sediments (25, 28), and soils (34). Viruses are not only abundant but also likely to significantly influence the population dynamics and genotypic composition of their bacterial host populations (29, 33). Process-level investigations of viral activity in sediments have shown that viruses are an active component of sediment microbial communities (23). Glud and Middelboe (23) found that bacterial growth rates and viral production increased in parallel with respiration, suggesting that viruses are active members of benthic microbial communities. Previous studies have shown that sediment viral abundance exceeds coexisting bacterial abundance by 10- to 1,000-fold (15, 17, 25), creating the potential for viral processes to influence the microbial ecology of aquatic sediments. However, with the exception of small-scale metagenomic investigations (4, 8), there exists little information on the genetic content of viriobenthos assemblages or how the composition of these assemblages changes over ecological gradients.Despite the high abundances of viruses in nature, the lack of a shared genetic marker creates a difficult problem when attempting to examine viral genetic diversity in environmental samples (31). Gene g20 encodes a multifunctional protein within the collar between the capsid and tail in T4-like bacteriophages and has been of significant importance in examining the genetic diversity of cyanomyoviruses (22, 24, 32). As well, others have been able to evaluate the diversity of unidentified aquatic picornavirus-like viruses using the RNA-dependent RNA polymerase gene (13). Other studies have attempted to examine phage genetic diversity based on the DNA polymerase gene (6, 21). Unfortunately, not all known phages contain these specific genes; hence, their use as universal markers is markedly inadequate. Thus, molecular methods that do not rely on polymorphism analysis of a single gene product must be used to circumvent these limitations.Recently, metagenomic approaches (i.e., sequencing of random genomic DNA fragments from whole microbial assemblages) have been used to examine genetic diversity within viral (18) and prokaryotic (10) assemblages. For sediment environments, metagenomic analysis has revealed that the viriobenthos is perhaps the most diverse of all viral assemblages, having been estimated to contain more than 10,000 genotypes per kg of sediment (4). Viral assemblages within a wide range of environments including marine (2, 8) and estuarine (3) waters, soils (20), stromatolites (16), and equine (9) and human feces (5, 40) have been examined. Overall, these studies have shown that a relatively low proportion (∼30%) of viral metagenome sequences are similar to sequences found in the nonredundant GenBank database (nr database), but the probability of detecting significant BLAST homologs increases twofold when queries against other viral metagenome sequence libraries are included (3). Thus, the function of most viral genes is currently unknown; however, these genes are broadly distributed among viruses.While large-scale metagenomics offers unprecedented resolution of the diversity and composition of a viral assemblage, the significant costs and computational requirements preclude routine application in a large collection of environmental samples. Recently, Winget and Wommack (36) introduced a new, low-cost, high-throughput means for genetic analysis of viral diversity utilizing random amplified polymorphic DNA PCR (RAPD-PCR). In this approach, a single 10-bp oligonucleotide serves as both the forward and reverse primers in a single thermocycler reaction. Target sequences in the template DNA are randomly selected; thus, development of a RAPD-PCR assay requires no prior information on the DNA coding content within the sample or organism—a significant advantage considering the largely unknown nature of most viral genes.In this study, we assess the potential of RAPD-PCR as a tool to examine genotype-scale compositional changes in the Chesapeake Bay viriobenthos and to explore the genetic diversity of viruses within Chesapeake Bay sediments. To our knowledge, this is the first study to use RAPD-PCR for evaluating sediment viral diversity and documenting compositional changes in viriobenthos assemblages over time and geographic location.  相似文献   
9.
The viral metagenome within an activated sludge microbial assemblage was sampled using culture-dependent and culture-independent methods and compared to the diversity of activated sludge bacterial taxa. A total of 70 unique cultured bacterial isolates, 24 cultured bacteriophages, 829 bacterial metagenomic clones of 16S rRNA genes, and 1,161 viral metagenomic clones were subjected to a phylogenetic analysis.Bacteriophages play an active role in the ecology of natural environments, influencing prokaryotic population dynamics (5, 15) and mediating lateral gene transfer between diverse bacterial species, for example. Activated sludge (AS) microbial assemblages in wastewater treatment plants have been shown to harbor great numbers of viruses with a wide range of genome sizes (7, 9, 10, 16). Historically, the focus of wastewater viral studies has been on specific host-virus interactions, the application of phages as tools in microbial source tracking, or the use of phages to improve the efficiency of the wastewater treatment process (e.g., foam and pathogen control) (2, 4, 8, 12, 17). Despite the interest in the wastewater viral community, a census of the activated sludge total viral community has not, to our knowledge, been investigated using both culture-based and metagenomic approaches.  相似文献   
10.
Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号