首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1993年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
A venerid bivalve Phacosoma japonicum (Reeve) occurring commonly in the Japanese coastal area preserves periodic growth lines in the shell cross-section. Long-term shell growth patterns of this species have been traced for many individuals on the intertidal flat of the Seto Inland Sea, west Japan. Sclerochronological analysis of these individuals and specimens collected monthly shows that several growth cessation marks within their shells are formed during the winter of each year prior to spawning. Hence the marks were used for age and growth rate determinations. As large individuals showed little shell growth for more than two years after the formation of 7 or 8 annual increments, this species probably has a lifespan of more than ten years. Shell growth patterns of this species based on annual increments can be accurately approximated by a von Bertalanffy curve. The number of microgrowth increments formed during a year tends to decrease with age, although it varies markedly among specimens of the same age. Furthermore, even in summer during rapid shell growth, the microgrowth increments do not represent daily and/or sub-daily tidal rhythms in many specimens. The results of this study and those by several authors strongly suggest that the annual increments are the key for age and growth rate determinations of both living and fossil bivalve species.  相似文献   
2.
Conspicuous calcareous coverings are present in the anterior region of 17 fossil jaws from late Cretaceous rocks of Hokkaido (Japan) and Sakhalin (U.S.S.R.). The jaws were preserved in calcareous nodules either in situ in body chambers of ammonites or in close association with identifiable ammonite conch remains. From the morphologic similarity between in situ and isolated jaws, they may be attributed to Tetragonites glabrus, Gaudryceras tenuiliratum, G. denseplicatum, G. sp., and Neophylloceras subramosum. The jaw apparatus of these species is composed of two three-dimensional black walls of carbonate apatite, which might be a diagenetic replacement of chitinous material. The calcareous coverings in both upper and lower jaws closely resemble those of upper (rhyncholite) and lower (conchorhynch) jaws of modern Nautilus as well as rhyncholite and conchorhynch fossils in their gross morphology, microstructure, and chemical composition. Calcified remains of cephalopod jaws known as rhyncholites and conchorhynchs have been reported from late Paleozoic to Recent. The present discovery of ammonoid rhyncholites and conchorhynchs suggests that at least some previously known late Paleozoic and Mesozoic counterparts belong to the Ammonoidea. The essential similarity of jaw elements of some Late Cretaceous ammonites and modern Nautilus gives reliable information on the feeding habits of the former. The sharp and thick ammonoid rhyncholites and conchorhynchs may have had a special function for cutting up food, similar to those of Nautilus.  相似文献   
3.
鸡胚内抗氧化物质的分布与变化   总被引:1,自引:0,他引:1  
生物体内存在多种内源性抗氧化物质,在生命过程中发挥着基本的防御功能,是人们十分关注的研究领域。本文综述了近年来鸡胚内抗氧化物质的形成与来源等研究成果,分析了鸡胚孵育过程中维生素(A、C、E)、类胡萝卜素、硒、过氧化氢酶和超氧化物歧化酶等主要抗氧化物质的分布与变化,及内源性抗氧化系统的形成,旨在为今后的研究提供有益的科学依据。  相似文献   
4.
A Late Cretaceous carbonate body (2 m in maximum diameter) surrounded by clastic rocks, recently discovered in the Nakagawa area (Hokkaido, Japan), is interpreted as a methane‐seep deposit, on the basis of negative carbon isotopic composition (as low as ?43.5‰), variable sulphide sulphur isotopic composition, high carbonate content, and in situ fractures. It most likely formed owing to methane‐bearing pore‐water diffusion. We estimate that the concentration of methane decreased toward the margin of the carbonate body, and that only small carbonate concretions were precipitated at a certain distance from the methane‐seep centre. These spatial characteristics coincide well with the observed pattern of faunal distribution. The gastropod‐dominated association (indeterminate abyssochrysids and ataphrids and the acmaeid limpet Serradonta sp. are most common) co‐occurs with lucinid and thyasirid bivalves (Thyasira sp., Myrtea sp., and Miltha sp.), and was found within and just above the methane‐derived carbonate body. Acharax and Nucinella (solemyoid bivalves) are more typical of the peripheral part of the methane‐influenced sediments. We suggest that this pattern of faunal distribution reflects the decreasing concentration of methane and apparently also hydrogen sulphide when moving from the centre of discharge toward the periphery of the methane seep.  相似文献   
5.
Tanabe, K., Landman, N.H. & Kruta, I. 2011: Microstructure and mineralogy of the outer calcareous layer in the lower jaws of Cretaceous Tetragonitoidea and Desmoceratoidea (Ammonoidea). Lethaia, Vol. 45, pp. 191–199. Based on the differences in their relative size, overall shape, structure and the degree of development of an outer calcified covering, lower jaws of the Ammonoidea have been classified into four morphotypes: normal, anaptychus, aptychus and rhynchaptychus types. However, detailed microstructural and mineralogical comparison of these morphotypes has not yet been addressed. This article documents the results of SEM and XRD observations of the lower jaws of three Late Cretaceous ammonoid species belonging to the Tetragonitoidea (Anagaudryceras limatum) and Desmoceratoidea (Pachydiscus kamishakensis and Damesites aff. sugata), based on excellent material preserved in situ within the body chamber, and retaining an aragonitic shell wall. The lower jaws of the three species are assigned to an intermediate form between anaptychus and aptychus types for the first two species and the rhynchaptychus type for the third species. Their black, presumably originally chitinous outer lamella is wholly covered with a calcareous layer. The calcareous layer is composed of aragonite in D. aff. sugata and A. limatum, and calcite in P. kamishakensis. The microstructure of the outer calcareous layer differs among the three species, i.e. granular in A. limatum, spherulitic prismatic in D. sugata, and prismatic in P. kamishakensis, all of which can be distinguished from the lamellar and spongy structure of the outer‐paired calcitic plates of the typical aptychus‐type lower jaws in some Jurassic and Cretaceous Ammonitina and Ancyloceratina. Our study suggests that most Jurassic and Cretaceous ammonoids possessed an outer calcareous layer in their lower jaws, although its mineralogy, microstructure and relative thickness vary among different taxa. □Ammonoidea, Cretaceous, Desmoceratoidea, lower jaw, microstructure, Tetragonitoidea.  相似文献   
6.
7.
The microstructure of aptychi (bivalved calcareous coverings on lower jaws) of three genera of Late Cretaceous Ancyloceratina, Baculites, Polyptychoceras and Jeletzkytes is described for the first time on the basis of well-preserved and in situ material from the Western Interior of the USA and Hokkaido, Japan. Optical and scanning electron microscope observations of aptychi on polished median and cross-sections reveal some variation in their relative size, shape and microstructure among the three genera. The aptychus of Baculites is composed of two calcitic layers: one with tilted lamellae and the other one with horizontal lamellae, whereas those of Polyptychoceras and Jeletzkytes consist of a thin layer with horizontal lamellae. Comparison with aptychi (e.g. Laevaptychus) of Jurassic Ammonitina shows that the aptychi of Ancyloceratina differ from those of Jurassic Ammonitina in the smaller number of layers and the absence of a sponge-like structure. We propose for the first time growth models for a sponge-like aptychus of Jurassic Ammonitina and the lamellar aptychus of Cretaceous Ancyloceratina. The remarkable microstructural variation of aptychi observed in Mesozoic Ammonoidea is probably related to the diversity of their modes of feeding and the secondary function of the lower jaws as opercula.  相似文献   
8.
Abstract: Groenlandibelus rosenkrantzi from the Maastrichtian of Greenland has long been thought to constitute an early representative of spirulid coleoids. This study shows that this view must be reassessed, at least in part. A re‐investigation of the types and of material recorded subsequently has revealed that none of these specimens is conspecific with the holotype of G. rosenkrantzi. Cyrtobelus birkelundae gen. nov, sp. nov. differs from the type of G. rosenkrantzi in having lower chambers and in lacking an apically elongated sheath. The longiconic phragmocone of G. rosenkrantzi has more features in common with the presumed spirulid genus Naefia. A specimen described in detail by J. A. Jeletzky in the mid 1960s as ‘G. rosenkrantzi’ is designated holotype of C. birkelundae sp. nov., which means that internal phragmocone features are still unknown in G. rosenkrantzi. Cyrtobelus hornbyense gen. nov, sp. nov. from the Campanian of western Canada constitutes the first record of early spirulids from the northeast Pacific, being based on seventeen extraordinarily well‐preserved phragmocones. This species differs from C. birkelundae sp. nov. only in the width of the siphuncular tube. The presence of a caecum, a nacre‐less conotheca that represents the continuation of the protoconch conotheca, conothecal flaps that anchor the mural parts of the septa, and a thin investment‐like sheath are characters shared only with Recent Spirula. In particular, the unusual protoconch architecture of Cyrtobelus gen. nov. challenges a phylogenetic origin within bactritoid‐like coleoids.  相似文献   
9.
Jaws are preserved within the body chambers of three specimens of a collignoniceratid ammonite Reesidites minimus (Hayasaka and Fukada) from the Upper liuoniaq of Hokkaido, Japan. Light microscopic and SEM observations of sections indicate that both upper and lower jaws consist mainly of a thick, double-walled chitinous lamella with a beak-like anterior projection. The outer chitinous lamella of the lower jaw is covered by a thick calcareous layer. The jaw apparatus of this species morphologically resembles aptychus-type jaws of Jurassic ammonites, but is distinguished by the presence of an anterior beak-like projection with serrated ridges and grooves in the lower jaw. These observations strongly suggest a biting ability in this species.  相似文献   
10.
A rhynchaptychus attributed to the lower jaw of Gaudryceras sp. from the Upper Santonian rocks of Hokkaido, Japan, has an interesting impression well-preserved on the inner surface of the outer lamella. The impression is regarded as the imprints of chitin-secreting cells (beccublast cells), because of similarity in the characteristic arrangement of polygonal pits to those of modern coleoids. Each unit cell impression of G. sp. is, however, about five to ten times larger than in modern coleoids known to us. In modern coleoids and Nautilus a layer of tall beccublast cells is intercalated between the buecal muscles and the outer side of the upper jaw and/or the inner side of the lower jaw. The other sides of the jaws are, in contrast, free from jaw muscles, and are covered directly with a thin connecting tissue. Based on these observations a possible buecal mass structure of G. sp. is restored. The beccublast cell impressions of Gaudryceras and modern coleoids markedly differ from that of modern Nautilus in the absence of numerous micropores. This fact suggests weaker mechanical properties of the jaw muscles in Gaudryceras than in Nautilus , as the branching ends of beccublast cells of the latter are inserted in the micropores to keep a firm attachment of the jaw muscles on the jaw plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号