首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  2017年   2篇
  2012年   2篇
  2011年   3篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1996年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有23条查询结果,搜索用时 265 毫秒
1.
1. Per‐capita resource availability in aquatic habitats is influenced directly by consumer density via resource competition and indirectly via delayed resource competition when temporally non‐overlapping cohorts of larvae exploit the same resources. In detritus‐based systems, resources are likely to be influenced by the age of the aquatic habitat, as detritus changes in quality over time and may be replenished by new inputs. 2. For aquatic insects that exploit detritus‐based habitats, feeding conditions experienced during immature stages can influence fitness directly via effects on development and survivorship, but also indirectly by influencing adult traits such as fecundity and longevity. 3. Larval habitat age and prior resource exploitation were manipulated in a field experiment using the container mosquito Aedes triseriatus. 4. It was found that A. triseriatus from older habitats had greater larval survival, faster development and greater adult longevity. Exploitation of larval habitats by a prior cohort of larvae had a significant negative effect on subsequent cohorts of larvae by delaying development. 5. It is suggested that extended conditioning of detritus probably resulted in conversion of recalcitrant resources to more available forms which improved the quality of the habitat. 6. In a parallel study, evidence was found of carry‐over effects of habitat age and prior exploitation on adult longevity for A. triseriatus and Aedes japonicus collected from unmanipulated aquatic habitats. 7. These results indicate the importance of detritus dynamics and the discontinuous nature of resource competition in these mosquito‐dominated aquatic systems.  相似文献   
2.
1. The causes of distribution patterns of stygobionts (obligate subterranean-dwelling aquatic species) were examined with special emphasis on vicariance and dispersal.
2. Dispersal was investigated on the premise that if migration is important, then migration at small scales should predict patterns at larger scales. Data on the copepod fauna of epikarst in Slovenia were especially useful for the study of migration, because data on habitat occupancy could be collected at scales of individual drips located metres apart to the scale of individual caves to entire karst regions. Occupancy of drips in one cave was a remarkably good predictor of occupancy of caves in a region, although not of the overall range of a given species. These results were also supported by occupancy patterns of the general stygobiotic fauna of West Virginia caves, compared at different scales.
3. Vicariance was investigated by noting that proximity to marine embayments increases the likelihood of vicariant speciation. In the U.S.A., only the fauna of the Edwards Aquifer of Texas has a significant component of marine-derived species. Differences in shape of the relationship between species number and number of caves in a county indicated that the marine-derived component represented an addition to rather than a replacement of the other stygobiotic species.
4. Thus, we found evidence for the importance of both vicariance and dispersal. The techniques employed could be used to study these patterns more generally, as more data become available.  相似文献   
3.
1. Invertebrates were collected semi‐quantitatively from four relatively undisturbed wetlands in the west coast of New Zealand’s South Island: two acidic fens and two swamps. Samples were collected from up to four discrete habitats within each wetland: large open‐water channels, small leads (small, ill‐defined channels with emergent vegetation in them) and large (>10 m diameter) or small (<10 m diameter) ponds. Samples were also collected from different plant species within each wetland, each with different morphology, and from areas without vegetation. This was done to determine whether invertebrate communities varied more between‐wetlands than within‐wetlands, as the results had implications for future wetland monitoring programmes. 2. Principal components analysis of water chemistry data revealed striking differences in pH, conductivity and nutrients between the four wetlands. Not surprisingly, pH was lowest in one of the acidic fens, and highest in one of the swamps, where conductivity was also high. Midges (Tanytarsus, Tanypodinae, Orthocladiinae and Ceratopogonidae), nematodes, harpactacoid copepods and the damselfly Xanthocnemis dominated the invertebrate fauna. Orthoclad midges and mites were the most widespread taxa, found in 91 of 94 samples. Diptera were the most diverse invertebrate group, followed by Trichoptera and Crustacea. 3. Ordination analysis of the invertebrate data showed that the four wetlands supported different invertebrate communities. However, species composition did not change completely along the ordination axes, suggesting that a relatively species‐poor invertebrate fauna was found in the wetlands. Taxa such as molluscs were restricted to wetlands with high pH. Multi‐response permutation procedures (MRPP) was used to analyse resultant ordination scores to see how they differed according to five terms: ‘Wetland’, ‘Habitat’, ‘Growth Form’, ‘Morphology’ and ‘Plant’. Most of the sample separation along ordination axes reflected differences between wetland, although the ‘Habitat’ and ‘Plant’ terms also explained some of the variation. The ‘Growth Form’ and ‘Morphology’ terms had only minor effects on community composition. 4. A multivariate regression tree modelled invertebrate assemblages according to the five predictor terms. The resultant model explained 54.8% of the species variance. The ‘Wetland’ term contributed most to the explanatory power, followed by ‘Habitat’. ‘Growth type’ and ‘Morphology’ explained only a small amount of variance to the regression tree, while the different plant species explained none of the variation. 5. Variation in these New Zealand wetland invertebrate communities appears to be controlled most by large‐scale factors operating at the level of individual wetlands, although different habitats within individual wetlands contributed slightly to this variation. Based on these results, sampling programmes to describe wetland invertebrate communities do not need to sample specific habitats or plant types within a wetland. Instead, samples can be collected from a wide range of habitats within individual wetlands, and pooled. Within each habitat, it is unnecessary to collect individual samples from different macrophytes or un‐vegetated areas. Our results suggest that collecting replicate pooled samples from different habitats within each wetland will be sufficient to characterize the invertebrate assemblage of each wetland.  相似文献   
4.
Biochemical changes in vivo and pathway interactions were investigated using integrated physiological and metabolic responses of Arabidopsis thaliana L. to ultraviolet (UV) radiation (280–400 nm) at 9.96 kJ m−2 d−1 over the entire life cycle from seed to seed (8 weeks). Columbia-0 (Col-0) and a UV-B sensitive accession ( fah-1 ) showed significant ( P  < 0.001) reductions in leaf growth after 6 weeks. Col-0 recovered growth after 8 weeks, with recovery corresponding to a switch from production of phenylpropanoids to flavonoids. fah-1 failed to recover, indicating that sinapate production is an essential component of recovery. Epidermal features show that UV radiation caused significant ( P  < 0.001) increases in trichome density, which may act as a structural defence response. Stomatal indices showed a significant ( P  < 0.0001) reduction in Col-0 and a significant ( P  < 0.001) increase in fah-1 . Epidermal cell density was significantly increased under UV radiation on the abaxial leaf surface, suggesting that that a fully functioning phenylpropanoid pathway is a requirement for cell expansion and leaf development. Despite wild-type acclimation, the costs of adaptation lead to reduced plant fitness by decreasing flower numbers and total seed biomass. A multi-phasic acclimation to UV radiation and the induction of specific metabolites link stress-induced biochemical responses to enhanced acclimation.  相似文献   
5.
Effects of floods on fish assemblages in an intermittent prairie stream   总被引:2,自引:0,他引:2  
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long‐term fish assemblage dynamics. 2. We used a 10‐year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north‐eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995–2005) and one perennial downstream flowing site (1997–2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3–5 km of stream between the long‐term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long‐term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams.  相似文献   
6.
Abstract: Identifying causes of declines and evaluating effects of management practices on persistence of local populations of burrowing owls (Athene cunicularia) requires accurate estimates of abundance and population trends. Moreover, regulatory agencies in the United States and Canada typically require surveys to detect nest burrows prior to approving developments or other activities in areas that are potentially suitable for nesting burrowing owls. In general, guidelines on timing of surveys have been lacking and surveys have been conducted at different times of day and in different stages of the nesting cycle. We used logistic regression to evaluate 7 factors that could potentially affect probability of a surveyor detecting a burrowing owl nest. We conducted 1,444 detection trials at 323 burrowing owl nests within 3 study areas in Washington and Wyoming, USA, between February and August 2000–2002. Detection probability was highest during the nestling period and increased with ambient temperature. The other 5 factors that we examined (i.e., study area, time of day, timing within the breeding season, wind speed, % cloud cover) interacted with another factor to influence detection probability. Use of call-broadcast surveys increased detection probability, even during daylight hours when we detected >95% of owls visually. Optimal timing of surveys will vary due to differences in breeding phenology and differences in nesting behavior across populations. Nevertheless, we recommend ≥3 surveys per year: one that coincides with the laying and incubation period, another that coincides with the early nestling period, and a third that coincides with the late nestling period. In northern latitudes, surveys can be conducted throughout the day. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):688–696; 2008)  相似文献   
7.
8.
1. General theory from aquatic ecology predicts that smaller aquatic habitats have shorter hydroperiods favouring species that are better resource competitors and complete development quickly. Larger habitats are predicted to have longer hydroperiods enabling longer‐lived predators to persist. Habitats with long hydroperiods and predators are predicted to favour slower‐developing, predator‐resistant species, rather than competitive species. 2. In a field experiment, habitat size and hydroperiod were manipulated independently in water‐filled containers, to test these hypotheses about processes structuring aquatic communities. Human‐made containers were used that are dominated by mosquitoes that vary in desiccation resistance, competitive ability, and predation resistance. 3. Habitat size and drying had significant effects on abundances of larvae of the common species in these communities. There was sorting of species by habitat size and by drying, with species that are better competitors relatively more abundant in smaller, more ephemeral habitats, and predator‐resistant, slower‐developing species relatively more abundant in larger or permanently flooded habitats. There were no detectable effects of habitat size or drying on the dominant predator. 4. Habitat size and its interaction with drying affected inputs of eggs to containers. Habitat size also affected relative abundances of the two dominant species in the egg population. 5. Although habitat size and hydroperiod significantly affected composition of these communities, these impacts did not appear to be mediated through effects on predator abundance. Species‐specific differences in habitat size and drying regime preferences, and habitat‐dependent larval performance appear to be the main forces shaping these communities.  相似文献   
9.
Conservation and population genetic studies are sometimes hampered by insufficient quantities of high quality DNA. One potential way to overcome this problem is through the use of whole genome amplification (WGA) kits. We performed rolling circle WGA on DNA obtained from matched hair and tissue samples of North American red squirrels (Tamiasciurus hudsonicus). Following polymerase chain reaction (PCR) at four microsatellite loci, we compared genotyping success for DNA from different source tissues, both pre‐ and post‐WGA. Genotypes obtained with tissue were robust, whether or not DNA had been subjected to WGA. DNA extracted from hair produced results that were largely concordant with matched tissue samples, although amplification success was reduced and some allelic dropout was observed. WGA of hair samples resulted in a low genotyping success rate and an unacceptably high rate of allelic dropout and genotyping error. The problem was not rectified by conducting PCR of WGA hair samples in triplicate. Therefore, we conclude that WGA is only an effective method of enhancing template DNA quantity when the initial sample is from high‐yield material.  相似文献   
10.
Abstract: We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p > 0.20) and population estimates with a low coefficient of variation (CV < 20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark-recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark-recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号