首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1957年   1篇
排序方式: 共有8条查询结果,搜索用时 484 毫秒
1
1.
Diversity and phylogeny of rhizobia   总被引:22,自引:1,他引:21  
  相似文献   
2.
3.
The influence of various evolutionary factors on the populations of the colour polymorphic meadow spittlebug, Philaenus spumarius (Homoptera), was investigated on islands in the Gulf of Finland. Long-term (30-year) investigations showed that the populations can survive through very narrow bottlenecks, but after strong reduction in the size of a population, random genetic drift may remove alleles or change allele frequencies. One of the factors sustaining the presence of almost all the colour polymorphism alleles in almost all the populations is gene flow. Migration seems to be largely by air and by the sea surface (anemohydrochoric). On one rocky island, gene flow was able to carry the top dominant allele, pT, to a number of scattered plant stands. However, it was not powerful enough to alter the differences in allele frequencies between populations living on the same island in meadows of different types 3 m or 12 m from each other. It is highly probable that the factor operating is meadow-specific selection. Its action appears to be based on the ecological character of the meadow. In the different meadows, the coverages of the food plants of the spittlebug are dissimilar. Differences in plant assemblages are possibly of importance in maintaining the meadow-specific allele frequencies in the spittlebug populations.  相似文献   
4.
Stomatal density, anatomy and nutrient concentrations of Scots pine (Pinus sylvestris L.) needles were studied during 3 years of growth at elevated CO2 (693 ± 30 µmol mol−1), at elevated temperature (ambient +2·8–6·2 °C depending on the time of the year) and in a combination of elevated CO2 and temperature in closed-top chambers. The treatments were started in August 1996. At elevated temperature, the needles that were grown in the first year (i.e. the 1997 cohort) were thinner, had thinner mesophyll in the abaxial side, thinner vascular cylinder and lower stomatal density than those grown at ambient temperature. The proportion of mesophyll area occupied by vascular cylinder or intercellular spaces were not changed. Lower stomatal density apparently did not lead to decreased use of water, as these needles had higher concentrations of less mobile nutrients (Ca, Mg, B, Zn and Mn), which could indicate increased total transpiration. In the 1997 and 1998 cohorts, elevation of temperature decreased concentrations of N, P, K, S and Cu. In the 1999 cohort, contradictory, higher concentrations of N and S at elevated temperature may be related to increased nutrient mineralization in the soil. Elevation of CO2 did not affect stomatal density, needle thickness, thickness of epidermis or hypodermis, vascular cylinder or intercellular spaces. Concentrations of N, P, S and Cu decreased at elevated CO2. Reductions were transient and most distinct in the 1997 cohort. The effects of CO2 and temperature were in some cases interactive, which meant that in the combined treatment stomatal density decreased less than at elevated temperature, and concentrations of nutrients decreased less than expected on the basis of separate treatments, whereas the thickness of the epidermis and hypodermis decreased more than in the separate treatments. In conclusion, alterations in the anatomy and stomatal density of Scots pine needles were more distinct at elevated temperature than at elevated CO2. Both elevated CO2 and temperature-induced changes in nutrient concentrations that partly corresponded to the biochemical and photosynthetic alterations in the same cohorts ( Luomala et al. Plant, Cell and Environment 26, 645–660, 2003 ) Reductions in nutrient concentrations and alterations in the anatomy were transient and more evident in the needle cohort that was grown in the first treatment year.  相似文献   
5.

Background

Mesenchymal stromal cells (MSCs) are a promising candidate for treatment of inflammatory disorders, but their efficacy in human inflammatory bowel diseases (IBDs) has been inconsistent. Comparing the results from various pre-clinical and clinical IBD studies is also challenging due to a large variation in study designs.

Methods

In this comparative pre-clinical study, we compared two administration routes and investigated the safety and feasibility of both fresh and cryopreserved platelet-lysate–expanded human bone marrow–derived MSCs without additional licensing in a dextran sodium sulfate (DSS) colitis mouse model both in the acute and regenerative phases of colitis. Body weight, macroscopic score for inflammation and colonic interleukin (IL)-1β and tumor necrosis factor (TNF)α concentrations were determined in both phases of colitis. Additionally, histopathology was assessed and Il-1β and Agtr1a messenger RNA (mRNA) levels and angiotensin-converting enzyme (ACE) protein levels were measured in the colon in the regenerative phase of colitis.

Results

Intravenously administered MSCs exhibited modest anti-inflammatory capacity in the acute phase of colitis by reducing IL-1β protein levels in the inflamed colon. There were no clear improvements in mice treated with fresh or cryopreserved unlicensed MSCs according to weight monitoring results, histopathology and macroscopic score results. Pro-inflammatory ACE protein expression and shedding were reduced by cryopreserved MSCs in the colon.

Conclusions

In conclusion, we observed a good safety profile for bone marrow–derived platelet lysate–expanded MSCs in a mouse pre-clinical colitis model, but the therapeutic effect of MSCs prepared without additional licensing (i.e. such as MSCs are administered in graft-versus-host disease) was modest in the chosen in vivo model system and limited to biochemical improvements in cytokines without a clear benefit in histopathology or body weight development.  相似文献   
6.
Fens, which extend over vast areas in the Northern hemisphere, are sources of the greenhouse gas CH4. Climate change scenarios predict a lowering water table (WT) in mires. To study the effect of WT drawdown on CH4 dynamics in a fen ecosystem, we took advantage of a WT drawdown gradient near a ground water extraction plant. Methane fluxes and CH4 production and oxidation potentials were related to microbial communities responsible for the processes in four mire locations (wet, semiwet, semidry, and dry). Principal component analyses performed on the vegetation, pH, CH4, and WT results clearly separated the four sampling locations in the gradient. Long‐term lowering of WT was associated with decreased coverage of Sphagnum and aerenchymatic plants, decreased CH4 field emissions and CH4 production potential. Based on mcrA terminal restriction fragment length polymorphism the methanogen community structure correlated best with the methane production and coverage of aerenchymatic plants along the gradient. Methanosarcinaceae and Methanocellales were found at the pristine wet end of the gradient, whereas the Fen cluster characterized the dry end. The methane‐oxidizing bacterial community consisted exclusively of Methylocystis bacteria, but interestingly of five different alleles (T, S, R, M, and O) of the particulate methane monooxygenase marker gene pmoA. The M allele was dominant in the wet locations, and the occurrence of alleles O, S, and T increased with drainage. The occurrence of the R allele that characterized the upper peat layer correlated with CH4 oxidation potential. These results advance our understanding of mire dynamics after long‐term WT drawdown and of the microbiological bases of methane emissions from mires.  相似文献   
7.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   
8.
In this experiment, the photosynthetic acclimation of successive needle cohorts of Scots pine were studied during 3 years of growth at elevated CO2 and temperature. Naturally regenerated Scots pine (Pinus sylvestris L.) trees were subjected to elevated CO2 concentration (+CO2, 700 p.p.m), elevated temperature (+T, ambient +2 to +6 °C) and to a combination of elevated CO2 and temperature (+CO2 + T) in closed‐top chambers, starting in August 1996. Trees growing in chambers with ambient CO2 and ambient temperature served as controls (AmbC). Elevated CO2 influenced the dark reactions more than the light reactions of photosynthesis, as in the 1996 and 1997 cohorts the carboxylation capacity of Rubisco was reduced in the first and second year of exposure, but there was no consistent change in chlorophyll fluorescence. Net photosynthesis measured at growth concentration of CO2 was higher at +CO2 than at AmbC on only one measuring occasion, was generally lower at +T and was not changed at +CO2 + T. However, trees grown at +T tended to invest more nitrogen (N) in Rubisco, as Rubisco/chlorophyll and the proportion of the total needle N bound to Rubisco occasionally increased. The interaction of +CO2 and +T on Rubisco was mostly negative; consequently, in the second and third year of the experiment the carboxylation capacity decreased at +CO2 + T. In the 1996, 1997 and 1998 cohorts, the structural N concentration of needles was lower at +CO2 than at AmbC. Elevated CO2 and elevated temperature generally had a positive interaction on N concentration; consequently, N concentration in needles decreased less at +CO2 + T than at +CO2. At +CO2 + T, the acclimation response of needles varied between years and was more pronounced in the 1‐year‐old needles of the 1997 cohort than in those of the 1998 cohort. Thus, acclimation was not always greater in 1‐year‐old needles than in current‐year needles. In the +CO2 + T treatment, elevated temperature had a greater effect on acclimation of needles than elevated CO2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号