首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2960篇
  免费   253篇
  2023年   25篇
  2022年   71篇
  2021年   117篇
  2020年   54篇
  2019年   62篇
  2018年   88篇
  2017年   78篇
  2016年   100篇
  2015年   123篇
  2014年   146篇
  2013年   210篇
  2012年   250篇
  2011年   185篇
  2010年   122篇
  2009年   94篇
  2008年   131篇
  2007年   112篇
  2006年   116篇
  2005年   103篇
  2004年   86篇
  2003年   78篇
  2002年   66篇
  2001年   49篇
  2000年   29篇
  1999年   38篇
  1998年   16篇
  1997年   22篇
  1996年   21篇
  1995年   14篇
  1994年   16篇
  1993年   19篇
  1992年   39篇
  1991年   33篇
  1990年   36篇
  1989年   39篇
  1988年   25篇
  1987年   29篇
  1986年   40篇
  1985年   31篇
  1984年   33篇
  1983年   20篇
  1982年   20篇
  1981年   20篇
  1980年   14篇
  1979年   27篇
  1978年   17篇
  1977年   20篇
  1976年   20篇
  1975年   24篇
  1974年   24篇
排序方式: 共有3213条查询结果,搜索用时 15 毫秒
1.
Insulin-like growth factor-1 (IGF-1) is a serum protein which unexpectedly folds to yield two stable tertiary structures with different disulphide connectivities; native IGF-1 [18-61,6-48,47-52] and IGF-1 swap [18-61,6-47, 48-52]. Here we demonstrate in detail the biological properties of recombinant human native IGF-1 and IGF-1 swap secreted from Saccharomyces cerevisiae. IGF-1 swap had a approximately 30 fold loss in affinity for the IGF-1 receptor overexpressed on BHK cells compared with native IGF-1.The parallel increase in dose required to induce negative cooperativity together with the parallel loss in mitogenicity in NIH 3T3 cells implies that disruption of the IGF-1 receptor binding interaction rather than restriction of a post-binding conformational change is responsible for the reduction in biological activity of IGF-1 swap. Interestingly, the affinity of IGF-1 swap for the insulin receptor was approximately 200 fold lower than that of native IGF-1 indicating that the binding surface complementary to the insulin receptor (or the ability to attain it) is disturbed to a greater extent than that to the IGF-1 receptor. A 1.0 ns high-temperature molecular dynamics study of the local energy landscape of IGF-1 swap resulted in uncoiling of the first A-region alpha-helix and a rearrangement in the relative orientation of the A- and B-regions. The model of IGF-1 swap is structurally homologous to the NMR structure of insulin swap and CD spectra consistent with the model are presented. However, in the model of IGF-1 swap the C-region has filled the space where the first A-region alpha-helix has uncoiled and this may be hindering interaction of Val44 with the second insulin receptor binding pocket.  相似文献   
2.
3.
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.  相似文献   
4.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.  相似文献   
5.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
6.
M-MuLV-specific DNA probes were used to establish the state of integration and amplification of recombinant proviral sequences in Moloney virus-induced tumors of Balb/Mo, Balb/c and 129 mice. The somatically acquired viral sequences contain both authentic M-MuLV genomes and recombinants of M-MuLV with endogenous viral sequences. All reintegrated genomes carry long terminal repeat (LTR) sequences at both termini of their genome. In the preleukemic stage a large population of cells exhibiting a random distribution of reintegrated M-MuLV genomes are seen, but during outgrowth of the tumor, selection of cells occurs leaving one or a few clonal descendants in the outgrown tumor. In this latter stage recombinant genomes can be detected. Although these recombinants constitute a heterogeneous group of proviruses, characteristic molecular markers are conserved among many individual proviral recombinants, lending credence to the notion that a certain recombinant structure is a prerequisite for the onset of neoplasia. The structure of these recombinants shows close structural similarities to the previously described mink cell focus-inducing (MCF)-type viruses.  相似文献   
7.
8.
9.
Erythrocyte samples from 101 individuals, originally from Punjab and living at the time of investigation in England, were screened for glucose-6-phosphate dehydrogenase (G6PD) variants by Beutler’s fluorescent spot test and standard cellulose acetate gel (Cellogel) electrophoresis. All but 2 of the 40 males in the study were found to be indistinguishable from normal G6PD B. One of the variants had 2% of the normal activity and resembled G6PD Mediterranean in electrophoretic behaviour. The other variant showed 52% of the normal activity and migrated slower than G6PD B in Cellogel with about half of the normal band intensity. A set of physicochemical characteristics of the variant determined by conventional methods distinguished it from the variants reported so far. It was designated as G6PD Punjab, and the corresponding allele asG6PD PUN. The most striking feature of G6PD Punjab is a remarkable alteration in its electrophoretic behaviour after dialysis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号