首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2857篇
  免费   169篇
  国内免费   1篇
  2023年   11篇
  2022年   49篇
  2021年   92篇
  2020年   51篇
  2019年   63篇
  2018年   60篇
  2017年   59篇
  2016年   97篇
  2015年   109篇
  2014年   119篇
  2013年   201篇
  2012年   254篇
  2011年   185篇
  2010年   126篇
  2009年   111篇
  2008年   152篇
  2007年   129篇
  2006年   125篇
  2005年   112篇
  2004年   98篇
  2003年   69篇
  2002年   80篇
  2001年   56篇
  2000年   35篇
  1999年   35篇
  1998年   20篇
  1997年   18篇
  1996年   26篇
  1995年   15篇
  1994年   14篇
  1993年   15篇
  1992年   26篇
  1991年   27篇
  1990年   22篇
  1989年   37篇
  1988年   22篇
  1987年   23篇
  1986年   18篇
  1985年   32篇
  1984年   25篇
  1982年   13篇
  1981年   16篇
  1979年   16篇
  1977年   14篇
  1976年   14篇
  1975年   10篇
  1974年   14篇
  1972年   10篇
  1971年   9篇
  1966年   11篇
排序方式: 共有3027条查询结果,搜索用时 15 毫秒
1.
2.
3.
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.  相似文献   
4.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.  相似文献   
5.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   
6.
7.
8.
Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.  相似文献   
9.
10.
The rat major histocompatibility complex class I antigens RT1.Au and RT1.Eu from the u haplotype and RT1.An from the n haplotype were labeled with 14C-asparagine or with 3H-fucose, mannose, galactose, and N-acetylglucosamine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed complete removal of radioactivity from the sugar-labeled antigen heavy chains by digestion with glycopeptidase F, an enzyme that removes N-linked glycans completely. High performance liquid chromatography analysis of the tryptic digests of the mixed sugar-labeled and asparagine-labeled antigens demonstrated that all the sugar-labeled peptides were coincident with asparagine-labeled peptides. The An antigen showed three glycopeptides, each of which had different amounts of sugar radioactivity. The antigens Au and Eu showed two glycopeptides with different amounts of radioactivity but at identical positions in the two antigens. Antigen Eu had an additional glycopeptide with a lower amount of radioactivity. The positions of the glycopeptides from the Au and Eu antigens were different from those of the An antigen. The peptide profiles of the 14C-asparagine-labeled Au and Eu antigens demonstrated distinct differences between the molecules. The results of this study show that: (a) all the glycans on rat class I antigens are N-linked, as they are on H-2 and HLA class I antigens; (b) there are compositional differences among the glycans in each of the three antigens; (c) the glycosylation pattern of the rat class I antigens is similar to that of the mouse class I antigens, which contain two or three glycans, in contrast to that of the human class I antigens, which contain only one glycan; and (d) the antigens Au and Eu from the same haplotype are more closely related to each other than they are to the An antigen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号