首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1917篇
  免费   91篇
  国内免费   3篇
  2023年   8篇
  2022年   47篇
  2021年   75篇
  2020年   43篇
  2019年   46篇
  2018年   48篇
  2017年   57篇
  2016年   72篇
  2015年   84篇
  2014年   99篇
  2013年   137篇
  2012年   172篇
  2011年   123篇
  2010年   88篇
  2009年   62篇
  2008年   90篇
  2007年   85篇
  2006年   90篇
  2005年   71篇
  2004年   49篇
  2003年   38篇
  2002年   29篇
  2001年   30篇
  2000年   20篇
  1999年   16篇
  1998年   12篇
  1997年   14篇
  1996年   14篇
  1995年   8篇
  1994年   13篇
  1991年   13篇
  1990年   10篇
  1989年   22篇
  1988年   12篇
  1987年   19篇
  1986年   15篇
  1985年   14篇
  1984年   14篇
  1983年   11篇
  1982年   11篇
  1981年   14篇
  1980年   11篇
  1979年   12篇
  1977年   6篇
  1974年   10篇
  1973年   6篇
  1970年   5篇
  1969年   5篇
  1968年   5篇
  1967年   11篇
排序方式: 共有2011条查询结果,搜索用时 15 毫秒
1.
2.
3.
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.  相似文献   
4.
Beginning in the mid-1950s, much progress has been made in studying various aspects of the genetics of mosquitoes, particularly involving several species of three principal genera,Aedes, Culex andAnopheles, that transmit important human diseases. Here I discuss selected areas of research involving formal genetics; genome structure, organization and evolution at the interspecific and intraspecific level; and evolutionary genetics of theAedes scutellaris group. Information and insights gained from in-depth analyses of these areas, particularly transmission genetics, cytogenetics and genetics of chromosomal rearrangements, and of mutagen-induced sexual sterility, have proved invaluable for the development of the theory and evaluation of feasibility of genetic control of natural populations. As a result, mosquitoes represent some of the best studied taxa at various levels of genetic organization. Recent developments in molecular genetics offer exciting possibilities for extension of these concepts.  相似文献   
5.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.  相似文献   
6.
7.
A multi-sample slippage test based on ordered observations has been given. The test statistic is based on the sum of ranks of the sample. The probability distribution of the test statistic has been worked out for small sample and it turns out to be chi-square distribution for large sample. The analytical procedure has been explained by a numerical example.  相似文献   
8.
9.
10.
The qualitative distribution and quantitative estimates of nitrogenase (EC 1.7.99.2), glutamine synthetase (EC 6.3.1.2), phycoerythrin and ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) were studied in the cyanobacterium Nostoc residing in internal cephalodia of the tripartite lichen Nephroma arcticum L. Polyclonal antisera, raised in rabbit against the proteins, and goat anti-rabbit IgG conjugated to 10 nm gold were used as probes to detect the antigens by transmission electron microscopy. Western blot analyses demonstrated the monospecificity of the antisera. Nitrogenase was localized in heterocysts, with vegetative cells showing a label intensity comparable to the background. Distribution of the antigen within the heterocysts was uniform. Glutamine synthetase labelling was very low, but appeared to be distributed in both cell types. An intense phycoerythrin labelling was associated with the thylakoid region of the vegetative cells, whereas a much lower labelling was observed in the heterocyst. No significant differences were found between cyanobionts in younger and older cephalodia except for the nitrogenase labelling, which was higher in heterocysts of the cyanobiont in younger cephalodia. Most of the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) label was present in vegetative cells. The Rubisco label was pronounced in the carboxysomes, whereas the label in the cytoplasm, on a unit area basis, was much lower. Heterocysts showed a label intensity similar to that of the vegetative cell cytoplasm. In Nostoc of the bipartite lichen Peltigera canina L., the Rubisco protein showed a comparable distribution pattern, but the average number of carboxysomes per vegetative cell was about 4 times higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号