首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer‐related deaths in women worldwide. In this study, a large Chinese pedigree with breast cancer including a proband and two female patients was recruited and a familial history of breast cancer was collected by questionnaire. Clinicopathological assessments and neoadjuvant therapy‐related information were obtained for the proband. Blood samples were taken, and gDNA was extracted. The BRCA1/2 and PALB2 genes were screened using next‐generation sequencing by a targeted gene panel. We have successfully identified a novel, germline heterozygous, missense mutation of the gene BRCA2: c.7007G>T, p.R2336L, which is likely to be pathogenic in the proband and her elder sister who both had breast cancer. Furthermore, the risk factors for developing breast cancer in this family are discussed. Thus, genetic counselling and long‐term follow‐up should be provided for this family of breast cancer patients as well as carriers carrying a germline variant of BRCA2: c.7007G>T (p.R2336L).  相似文献   
2.
3.
Zhou  Ju  Imani  Saber  Shasaltaneh  Marzieh Dehghan  Liu  Shuguang  Lu  Tao  Fu  Junjiang 《Molecular biology reports》2022,49(3):1799-1816
Background

Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L.

Methods and results

Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114–359 and 797–1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells.

Conclusions

These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.

  相似文献   
4.
Long J  Guo B  Teng J  Yu Y  Wang L  Li X 《Bioresource technology》2011,102(21):10114-10123
Liquefaction is a process for the production of biofuel or value-added biochemicals from non-food biomass. SO3H-, COOH-functionalized and HSO4-paired imidazolium ionic liquids were shown to be efficient catalysts for bagasse liquefaction in hot compressed water. Using SO3H-functionalized ionic liquid, 96.1% of bagasse was liquefied and 50.6% was selectively converted to low-boiling biochemicals at 543 K. The degree of liquefaction and selectivity for low-boiling products increased and the average molecular weight of the tetrahydrofuran soluble products decreased with increasing acidic strength of ionic liquids. Analysis of products and comparative characterization of raw materials and residues suggested that both catalytic liquefaction and hydrolysis processes contribute to the high conversion of bagasse. A possible liquefaction mechanism based on the generation of 3-cyclohexyl-1-propanol, one of the main products, is proposed.  相似文献   
5.
6.
7.
Colorectal cancer is generally believed to progress through an adenoma - carcinoma sequence. Adenomatous polyposis coli (APC) mutations serve as the initiating event in adenoma formation. The ApcMin/+ mouse harbors a mutation in the APC gene, which is similar or identical to the mutation found in individuals with familial adenomatous polyposis and 70% of all sporadic CRC cases. Autophagy is a constitutive process required for proper cellular homeostasis. However, its role in intestinal adenoma formation is still controversial. Atractylenolide I (AT1) is a sesquiterpenoid that possesses various clinically relevant properties such as anti-tumor and anti-inflammatory activities. The role of AT1 on adenoma formation was tested in ApcMin/+ mice and its underlying mechanism in regulating autophagy was documented. D-dopachrome tautomerase (D-DT) was identified as a potential target of AT1 by an proteomics-based approach. The effects of p53 modification on autophgic flux was monitored in p53?/? and p53+/+ HCT116 cells. Small interfering RNA was used to investigate the function of Atg7 and D-DT on autophagy programme induce by AT1. AT1 effectively reduced the formation of adenoma and downregulated the tumorigenic proteins in ApcMin/+ mice. Importantly, AT1 stimulated autophagic flux through downregulating acetylation of p53. Activation of Sirt1 by AT1 was essential for the deacetylation of p53 and downregulation of D-DT. The lowered expression of COX-2 and β-catenin by AT1 were partly recovered by Atg7 knockdown. AT1 activates autophagy machinery to downregulate D-DT and reduce intestinal adenoma formation. This discovery provides evidence in vivo and in vitro that inducing autophagy by natural products maybe a potential therapy to ameliorate colorectal adenoma formation.  相似文献   
8.
To lay the foundation of the classification of Canarium album (C. album), and C. album from Terminalia Chebula (T. chebula) in different areas of China, improved RAPD and ISSR analysis were performed to analyze polymorphism and genetic relationship. Ten samples were collected from different locations in China. A total of 221 fragments were detected by improved RAPD, out of which polymorphic fragments accounted for 82.3% with average amplification bands of 10.05 per primer. ISSR markers revealed a total of 147 alleles, where polymorphic fragments accounted for 83.5%, with average amplification bands of 7.35 per primer. The sizes of fragments ranged from 200 to 2500 bp and from 150 to 2000 bp in RAPD and ISSR markers, respectively. The similarity coefficient ranged from 0.46 to 0.86 with RAPD markers and 0.36 to 0.89 with ISSR markers. The results indicated that improved RAPD and ISSR methods are useful for genetic diversity study of C. album. Thus, this study provides us the theoretical basis for the breeding and classification of C. album in South and Southwest China.  相似文献   
9.
10.
Furin is a proprotein convertase that activates different kinds of regulatory proteins, including SARS-CoV-2 spike protein which contains an additional furin-specific cleavage site. It is essential in predicting cancer patients'' susceptibility to SARS-CoV-2 and the disease outcomes due to varying furin expressions in tumor tissues. In this study, we analyzed furin''s expression, methylation, mutation rate, functional enrichment, survival rate and COVID-19 outcomes in normal and cancer tissues using online databases, and our IHC. As a result, furin presented with biased expression profiles in normal tissues, showing 12.25-fold higher than ACE2 in the lungs. The furin expression in tumors were significantly increased in ESCA and TGCT, and decreased in DLBC and THYM, indicating furin may play critical mechanistic functions in COVID-19 viral entry into cells in these cancer patients. Line with furin over/downexpression, furin promoter hypo-/hyper-methylation may be the regulatory cause of disease and lead to pathogenesis of ESCA and THYM. Furthermore, presence of FURIN-201 isoform with functional domains (P_proprotein, Peptidase_S8 and S8_pro-domain) is highest in all cancer types in comparison to other isoforms, demonstrating its use in tumorigenesis and SARS-Cov-2 entry into tumor tissues. Furin mutation frequency was highest in UCES, and its mutation might elevate ACE2 expression in LUAD and UCEC, reduce ACE2 expression in COAD, elevate HSPA5 expression in PAAD, and elevate TMPRSS2 expression in BRCA. These results showed that furin mutations mostly increased expression of ACE2, HSPA5, and TMPRSS2 in certain cancers, indicating furin mutations might facilitate COVID-19 cell entry in cancer patients. In addition, high expression of furin was significantly inversely correlated with long overall survival (OS) in LGG and correlated with long OS in COAD and KIRC, indicating that it could be used as a favorable prognostic marker for cancer patients'' survival. GO and KEGG demonstrated that furin was mostly enriched in genes for metabolic and biosynthetic processes, retinal dehydrogenase activity, tRNA methyltransferase activity, and genes involving COVID-19, further supporting its role in COVID-19 and cancer metabolism. Moreover, Cordycepin (CD) inhibited furin expression in a dosage dependent manner. Altogether, furin''s high expression might not only implies increased susceptibility to SARS-CoV-2 and higher severity of COVID-19 symptoms in cancer patients, but also it highlights the need for cancer treatment and therapy during the COVID-19 pandemic. CD might have a potential to develop an anti-SARS-CoV-2 drug through inhibiting furin expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号