首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1336篇
  免费   66篇
  国内免费   2篇
  1404篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   4篇
  2019年   11篇
  2018年   16篇
  2017年   16篇
  2016年   25篇
  2015年   52篇
  2014年   51篇
  2013年   100篇
  2012年   80篇
  2011年   78篇
  2010年   43篇
  2009年   33篇
  2008年   72篇
  2007年   95篇
  2006年   90篇
  2005年   70篇
  2004年   81篇
  2003年   96篇
  2002年   82篇
  2001年   16篇
  2000年   21篇
  1999年   12篇
  1998年   24篇
  1997年   19篇
  1996年   14篇
  1995年   14篇
  1994年   20篇
  1993年   14篇
  1992年   11篇
  1991年   10篇
  1990年   12篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1976年   6篇
  1975年   6篇
  1974年   7篇
  1973年   3篇
  1967年   2篇
排序方式: 共有1404条查询结果,搜索用时 15 毫秒
1.
Some RNAs, including both single- and double-stranded RNAs, when incubated with chick embryo cell culture induce cellular resistance against viruses. Evidence was now obtained indicating that the induction of cellular resistance by RNA depends on the cellular metabolic activity, especially on the synthesis of cellular RNA and protein. Thus, inhibitors of RNA and protein synthesis, actinomycin D and cycloheximide, were found to inhibit the development of an antiviral state when added before, or during the relatively early period of, incubation of the cells with RNA. In the course of induction of cellular resistance, three stages may be distinguished, the priming stage, the developing stage, and the established resistant stage.  相似文献   
2.
The catalase molecule in germinating pumpkin cotyledons is synthesizedas a precursor (59-kDa) form, whose relative molecular massis larger than the mature enzyme (55-kDa). Although both typesof molecules are localized in the microbodies, the 59-kDa specieshas been shown to be present predominantly in the leaf peroxisomesisolated from green cotyledons, while the 55-kDa species ispredominantly in the glyoxysomes from etiolated cotyledons [Yamaguchiet al. (1984) Proc. Natl. Acad. Sci. USA, 81: 4809]. We examinedthe distribution of the 59- and 55-kDa catalase molecules indark- and light-grown tissues of pumpkin seedlings as well asin other plant species, using the immunoblotting technique.The ratios of the 59- and 55-kDa catalase species differed inthe pumpkin tissues examined. Light interferes with the conversionof the 59-kDa precursor to the 55-kDa form, especially in thecotyledons. The effect of light was less pronounced in the rootsand hypocotyls, indicating that the light regulation of theconversion is tissue-specific. Dark- and light-grown cotyledonsfrom cucumber and watermelon seedlings showed a similar lightregulation, suggesting that cucurbitaceous plants possess similarlight-regulatory mechanism. From the analysis of catalase proteinfrom various plant tissues, a limited correlation between molecularforms of catalase and different microbody populations was observed. (Received September 6, 1986; Accepted December 4, 1986)  相似文献   
3.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   
4.
A heterotrimeric G-protein in vertebrate photoreceptor cells is called transducin (T alpha beta gamma), whose gamma-subunit is a mixture of two components, T gamma-1 and T gamma-2. T gamma-2 is S-farnesylated and partly carboxyl methylated at the C-terminal cysteine residue, whereas T gamma-1 lacks the modified cysteine residue. To elucidate the physiological significance of the double modifications in T gamma, we established a simple chromatographic procedure to isolate T gamma-1, methylated T gamma-2 and non-methylated T gamma-2 on a reversed phase column. Taking advantage of the high and reproducible yield of T gamma from the column, we analyzed the composition of T gamma subspecies in the T alpha-T beta gamma complex which did not bind with transducin-depleted rod outer segment membranes containing metarhodopsin II. The binding of T alpha-T beta gamma with the membranes was shown to require the S-farnesylated cysteine residue of T gamma, whose methylation further enhanced the binding. This synergistic effect was not evident when T alpha was either absent or converted to the GTP-bound form which is known to dissociate from T beta gamma. Thus we concluded that a formation of the ternary complex, T alpha-T beta gamma-metarhodopsin II, is enhanced by the farnesylation and methylation of T gamma. This suggests that the double modifications provide most efficient signal transduction in photoreceptor cells.  相似文献   
5.
The spontaneous release of [3H] gamma-aminobutyric acid ([3H]GABA) in various areas of rat brain injected with [3H]putrescine was examined using a push-pull perfusion technique. The release in a 25-min perfusate was highest in the caudate-putamen. The effect of high K+ stimulation on the release of [3H]GABA formed from [3H]putrescine was examined in the caudate-putamen. The release was enhanced by high K+ solution in a Ca2+-dependent manner.  相似文献   
6.
7.
8.
Many eukaryotic proteins are bound to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Its core backbone, which is conserved in different organisms, is synthesized in the endoplasmic reticulum by the sequential addition of glycan components to phosphatidylinositol. One of the human GPI synthesis genes,PIGF(phosphatidylinositol glycan complementation class F), which is involved late in the synthesis pathway, has been cloned. In this study, we isolated complementary and genomic clones ofPigf,a murine counterpart ofPIGF. Pigfencodes a 219 amino acid protein that complements a class F mutation. ThePigfgene consists of six exons spanning 30 kb and was mapped to chromosome 17 at 17E4–E5. These features are very similar toPIGF,thus demonstrating the interspecies conservation of structure, function, gene organization, and genetic locus between these GPI synthesis genes. The results also extend a region in murine distal chromosome 17 that is syntenic to human chromosome 2p16–p22.  相似文献   
9.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号