首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1195篇
  免费   55篇
  国内免费   2篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   8篇
  2018年   17篇
  2017年   15篇
  2016年   26篇
  2015年   51篇
  2014年   50篇
  2013年   98篇
  2012年   76篇
  2011年   75篇
  2010年   41篇
  2009年   34篇
  2008年   62篇
  2007年   80篇
  2006年   75篇
  2005年   65篇
  2004年   76篇
  2003年   91篇
  2002年   73篇
  2001年   14篇
  2000年   18篇
  1999年   13篇
  1998年   19篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   15篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   9篇
  1986年   7篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1979年   2篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1967年   3篇
  1966年   1篇
排序方式: 共有1252条查询结果,搜索用时 40 毫秒
1.
The catalase molecule in germinating pumpkin cotyledons is synthesizedas a precursor (59-kDa) form, whose relative molecular massis larger than the mature enzyme (55-kDa). Although both typesof molecules are localized in the microbodies, the 59-kDa specieshas been shown to be present predominantly in the leaf peroxisomesisolated from green cotyledons, while the 55-kDa species ispredominantly in the glyoxysomes from etiolated cotyledons [Yamaguchiet al. (1984) Proc. Natl. Acad. Sci. USA, 81: 4809]. We examinedthe distribution of the 59- and 55-kDa catalase molecules indark- and light-grown tissues of pumpkin seedlings as well asin other plant species, using the immunoblotting technique.The ratios of the 59- and 55-kDa catalase species differed inthe pumpkin tissues examined. Light interferes with the conversionof the 59-kDa precursor to the 55-kDa form, especially in thecotyledons. The effect of light was less pronounced in the rootsand hypocotyls, indicating that the light regulation of theconversion is tissue-specific. Dark- and light-grown cotyledonsfrom cucumber and watermelon seedlings showed a similar lightregulation, suggesting that cucurbitaceous plants possess similarlight-regulatory mechanism. From the analysis of catalase proteinfrom various plant tissues, a limited correlation between molecularforms of catalase and different microbody populations was observed. (Received September 6, 1986; Accepted December 4, 1986)  相似文献   
2.
Levels of protein kinase C activity in human gastrointestinal cancers   总被引:1,自引:0,他引:1  
The protein kinase C (PKC) activities of tumor tissue and adjacent normal mucosa of human cancers of the esophagus (8 cases), stomach (1 case) and colon (3 cases) were measured. Considerable variations were found in the activity of PKC and in its subcellular distribution in these cancers. The PKC activities of the membrane and cytosolic fractions of the eight esophageal cancers were, however, similar to those of the adjacent normal mucosa: the average PKC activities of the tumor tissues and normal mucosa were 7.5 and 8.3 pmol/min/mg protein, respectively, in their membrane fractions and 7.9 and 7.8 pmol/min/mg protein, respectively, in their cytosolic fractions.  相似文献   
3.
The inositol phospholipid metabolism is one of the main pathways of signal transduction in cells. We measured the activities of its key enzymes in v-Ha-ras-transformed 208F rat fibroblasts. In the ras-transformed clones, incorporation of [32P]Pi into intermediates of the inositol phospholipid metabolism was stimulated. The activities of phosphatidylinositol and phosphatidylinositol-4-phosphate kinases in the transformed clones were about 35-50% more than in untransformed cells, indicating increased inositol phospholipid metabolism. However, the activity of diacylglycerol kinase in their membrane fraction was 25-35% less than that of untransformed cells, although the total diacylglycerol kinase activity did not change. The imbalance of these kinases could constitute one of the main reasons leading to the increased level of inositol phosphates and the accumulation of diacylglycerol to 2-2.2 times that in control 208F cells. Phosphatidylinositol-4,5-bisphosphate-phospholipase C activity did not change on the transformation when assayed under various conditions. The increased level of diacylglycerol caused intracellular translocation, activation, and down-regulation of protein kinase C changes which may be one of the essential events in transformation by the v-Ha-ras gene.  相似文献   
4.
The spontaneous release of [3H] gamma-aminobutyric acid ([3H]GABA) in various areas of rat brain injected with [3H]putrescine was examined using a push-pull perfusion technique. The release in a 25-min perfusate was highest in the caudate-putamen. The effect of high K+ stimulation on the release of [3H]GABA formed from [3H]putrescine was examined in the caudate-putamen. The release was enhanced by high K+ solution in a Ca2+-dependent manner.  相似文献   
5.
In the previous studies with endonucleases specific for single-stranded DNA, we have indicated that the nonhistone chromosomal protein HMG(1 + 2) prepared from pig thymus has an activity to unwind DNA partially at low protein-to-DNA weight ratios (Yoshida, M. & Shimura, K. (1984) J. Biochem. 95, 117-124). In the present work, we have pursued the unwinding reaction by HMG(1 + 2) by thermal melting temperature analysis of DNA, and by investigating the effect of Mg2+ on the reaction. The melting temperature of DNA in the presence of HMG(1 + 2) at low protein weight ratios decreased in 2 mM Tris-HCl, pH 7.8, whereas it increased at higher ratios. The depressions of melting temperature by HMG(1 + 2) at low ratios were not observed either in the system of 2 mM Tris-HCl, pH 7.8, containing EDTA or in the system containing samples treated in advance with EDTA. An addition of Mg2+ to the system reproduced the depression of melting temperature at low protein-to-DNA ratios as well as the increase at higher ratios. Analysis by Mg2+-equilibrated gel filtration revealed that HMG(1 + 2) is a Mg2+-binding protein. However, the depression of melting temperature at low protein-to-DNA ratios was not due to removal of Mg2+ from DNA by HMG(1 + 2). From these results, it is concluded that HMG(1 + 2) causes a partial DNA unwinding detectable by thermal melting temperature analysis of DNA, and that Mg2+ is necessary for the unwinding reaction.  相似文献   
6.
Many eukaryotic proteins are bound to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Its core backbone, which is conserved in different organisms, is synthesized in the endoplasmic reticulum by the sequential addition of glycan components to phosphatidylinositol. One of the human GPI synthesis genes,PIGF(phosphatidylinositol glycan complementation class F), which is involved late in the synthesis pathway, has been cloned. In this study, we isolated complementary and genomic clones ofPigf,a murine counterpart ofPIGF. Pigfencodes a 219 amino acid protein that complements a class F mutation. ThePigfgene consists of six exons spanning 30 kb and was mapped to chromosome 17 at 17E4–E5. These features are very similar toPIGF,thus demonstrating the interspecies conservation of structure, function, gene organization, and genetic locus between these GPI synthesis genes. The results also extend a region in murine distal chromosome 17 that is syntenic to human chromosome 2p16–p22.  相似文献   
7.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号